Table of Contents
Journal of Coatings
Volume 2013 (2013), Article ID 109176, 9 pages
http://dx.doi.org/10.1155/2013/109176
Research Article

Photoconductive Properties of Brush Plated Copper Indium Gallium Selenide Films

1Department of Electronics and Communication Systems, A.J.K.College of Arts and Science, Coimbatore 641105, India
2Department of Electronics, Ramakrishna Mission Vidyalaya College of Arts and Science, Perianaickenpalayam, Coimbatore 641020, India
3ECMS Division, CSIR-CECRI, Karaikudi 6, India

Received 26 May 2013; Accepted 6 September 2013

Academic Editor: Mariana Braic

Copyright © 2013 N. P. Subiramaniyam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Abou-Ras, D. Rudmann, G. Kostorz, S. Spiering, M. Powalla, and A. N. Tiwari, “Microstructural and chemical studies of interfaces between Cu(In,Ga) Se2 and In2S3 layers,” Journal of Applied Physics, vol. 97, no. 8, Article ID 084908, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Jackson, D. Hariskos, E. Lotter et al., “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Progress in Photovoltaics, vol. 19, no. 7, pp. 894–897, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Lincot, “Electrodeposition of semiconductors,” Thin Solid Films, vol. 487, no. 1-2, pp. 40–48, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. I. M. Dharmadasa, N. B. Chaure, G. J. Tolan, and A. P. Samantilleke, “Development of p+, p, i, n, and n+ -type CuInGa Se2 layers for applications in graded bandgap multilayer thin-film solar cells,” Journal of the Electrochemical Society, vol. 154, no. 6, pp. H466–H471, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Delsol, M. C. Simmonds, and I. M. Dharmadasa, “Chemical etching of Cu(In, Ga)Se2 layers for fabrication of electronic devices,” Solar Energy Materials and Solar Cells, vol. 77, no. 4, pp. 331–339, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. M. E. Calixto, K. D. Dobson, B. E. McCandless, and R. W. Birkmire, “Controlling growth chemistry and morphology of single-bath electrodeposited Cu(In,Ga)Se2 thin films for photovoltaic application,” Journal of the Electrochemical Society, vol. 153, no. 6, pp. G521–G528, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. D.-Y. Lee, S. Park, and J. Kim, “Structural analysis of CIGS film prepared by chemical spray deposition,” Current Applied Physics, vol. 11, no. 1, pp. S88–S92, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. C. A. Rincon, E. Hernandez, M. T. Alanso et al., “Optical transitions near the band edge in bulk CuInxGa1−xSe2 from ellipsometric measurements,” Materials Chemistry and Physics, vol. 70, no. 3, pp. 300–304, 2001. View at Publisher · View at Google Scholar
  9. H. Mustafa, D. Hunter, A. K. Pradhan, U. N. Roy, Y. Cui, and A. Burger, “Synthesis and characterization of AgInSe2 for application in thin film solar cells,” Thin Solid Films, vol. 515, no. 17, pp. 7001–7004, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. C. Santhosh Kumar and B. Pradeep, “Formation and properties of AgInSe2 thin films by co-evaporation,” Vacuum, vol. 72, no. 4, pp. 369–378, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Venkatachalam, M. D. Kannan, S. Jayakumar, R. Balasundaraprabhu, and N. Muthukumarasamy, “Effect of annealing on the structural properties of electron beam deposited CIGS thin films,” Thin Solid Films, vol. 516, no. 20, pp. 6848–6852, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. J. A. Groenik and P. H. Janse, “A generalized approach to the defect chemistry of ternary compounds,” Zeitschrift für Physikalische Chemie, vol. 110, no. 1, pp. 17–28, 1978. View at Publisher · View at Google Scholar
  13. H. Y. Joo and H. J. Kim, “Spectrophotometric analysis of aluminum nitride thin films,” Journal of Vacuum Science & Technology A, vol. 17, no. 3, pp. 862–871, 1999. View at Publisher · View at Google Scholar
  14. C. J. Huang, T. H. Meen, M. Y. Lai, and W. R. Chen, “Formation of CuInSe2 thin films on flexible substrates by electrodeposition (ED) technique,” Solar Energy Materials and Solar Cells, vol. 82, no. 4, pp. 553–565, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. K. T. R. Reddy and R. B. V. Chalapathy, “Preparation and properties of sprayed CuGa0.5In0.5Se2 thin films,” Solar Energy Materials and Solar Cells, vol. 50, no. 1—4, pp. 19–24, 1998. View at Publisher · View at Google Scholar
  16. A. Rose, “Space-charge-limited currents in solids,” Physical Review, vol. 97, no. 6, pp. 1538–1544, 1955. View at Publisher · View at Google Scholar
  17. R. Pal, K. K. Chattopadhya, S. Chandhuri, and A. K. Pal, “Photoconductivity in CuInSe2 films,” Solar Energy Materials and Solar Cells, vol. 33, no. 2, pp. 241–251, 1994. View at Publisher · View at Google Scholar
  18. D. Fischer, T. Dylla, N. Meyer, M. E. Beck, A. Jäger-Waldau, and M. C. Lux-Steiner, “CVD of CuGaSe2 for thin film solar cells employing two binary sources,” Thin Solid Films, vol. 387, no. 1-2, pp. 63–66, 2001. View at Publisher · View at Google Scholar · View at Scopus