Table of Contents
Journal of Coatings
Volume 2013, Article ID 180740, 6 pages
http://dx.doi.org/10.1155/2013/180740
Research Article

Hot-Dip Aluminizing of Low Carbon Steel Using Al-7Si-2Cu Alloy Baths

1Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
2Department of Mechanical Engineering, Srinivasa School of Engineering, Mukka, Surathkal, Mangalore 575021, India

Received 17 May 2013; Accepted 14 August 2013

Academic Editor: Masahiro Fukumoto

Copyright © 2013 Prashanth Huilgol et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y.-Y. Chang, C.-C. Tsaur, and J. C. Rock, “Microstructure studies of an aluminide coating on 9Cr-1Mo steel during high temperature oxidation,” Surface and Coatings Technology, vol. 200, no. 22-23, pp. 6588–6593, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. C.-J. Wang and S.-M. Chen, “The high-temperature oxidation behavior of hot-dipping Al-Si coating on low carbon steel,” Surface and Coatings Technology, vol. 200, no. 22-23, pp. 6601–6605, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Maki, M. Suehiro, and Y. Ikematsu, “Alloying reaction of aluminized steel sheet,” ISIJ International, vol. 50, no. 8, pp. 1205–1210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Gebhardt and W. Obrowski, “Reactionen von festem eisenmit schmelzen aus aluminium und aluminumlegierungen,” Metallkunde, vol. 4, p. 154, 1953. View at Google Scholar
  5. K. Bouché, F. Barbier, and A. Coulet, “Intermetallic compound layer growth between solid iron and molten aluminium,” Materials Science and Engineering A, vol. 249, no. 1-2, pp. 167–175, 1998. View at Google Scholar · View at Scopus
  6. A. Bouayad, C. Gerometta, A. Belkebir, and A. Ambari, “Kinetic interactions between solid iron and molten aluminium,” Materials Science and Engineering A, vol. 363, no. 1-2, pp. 53–61, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. V. I. Dybkov, “Interaction of 18Cr-10Ni stainless steel with liquid aluminium,” Journal of Materials Science, vol. 25, no. 8, pp. 3615–3633, 1990. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Springer, A. Kostka, E. J. Payton, D. Raabe, A. Kaysser-Pyzalla, and G. Eggeler, “On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys,” Acta Materialia, vol. 59, no. 4, pp. 1586–1600, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. W.-J. Cheng and C.-J. Wang, “Effect of silicon on the formation of intermetallic phases in aluminide coating on mild steel,” Intermetallics, vol. 19, no. 10, pp. 1455–1460, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. W.-J. Cheng and C.-J. Wang, “Characterization of intermetallic layer formation in aluminide/nickel duplex coating on mild steel,” Materials Characterization, vol. 69, pp. 63–70, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. Y.-J. Li, J. Wang, and X. Holly, “X-ray diffraction and TEM analysis of Fe—Al alloy layer in coating of new hot dip aluminised steel,” Materials Science and Technology, vol. 19, no. 5, pp. 657–660, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. K. U. Bhat, P. Huilgol, and J. Jithin, “Aluminising of mild steel plates,” ISRN Metallurgy, vol. 2013, Article ID 191723, 6 pages, 2013. View at Publisher · View at Google Scholar
  13. M. V. Akdeniz and A. O. Mekhrabov, “The effect of substitutional impurities on the evolution of Fe-Al diffusion layer,” Acta Materialia, vol. 46, no. 4, pp. 1185–1192, 1998. View at Google Scholar · View at Scopus
  14. W.-Y. Kim, D. E. Luzzi, and D. P. Pope, “Room temperature deformation behavior of the Hf-V-Ta C15 Laves phase,” Intermetallics, vol. 11, no. 3, pp. 257–267, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. J. L. Song, S. B. Lin, C. L. Yang, C. L. Fan, and G. C. Ma, “Analysis of intermetallic layer in dissimilar TIG welding-brazing butt joint of aluminium alloy to stainless steel,” Science and Technology of Welding and Joining, vol. 15, no. 3, pp. 213–218, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. B. Lin, J. L. Song, C. L. Yang, C. L. Fan, and D. W. Zhang, “Brazability of dissimilar metals tungsten inert gas butt welding-brazing between aluminum alloy and stainless steel with Al-Cu filler metal,” Materials and Design, vol. 31, no. 5, pp. 2637–2642, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. V. I. Dybkov, “Phase stability during growth of compound layers,” Materials Science Forum, vol. 155-156, pp. 31–38, 1994. View at Publisher · View at Google Scholar
  18. W. Zhang, D. Sun, L. Han, W. Gao, and X. Qiu, “Characterization of intermetallic compounds in dissimilar material resistance spot welded joint of high strength steel and aluminum alloy,” ISIJ International, vol. 51, no. 11, pp. 1870–1877, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Deqing, S. Ziyuan, and Z. Longjiang, “A liquid aluminum corrosion resistance surface on steel substrate,” Applied Surface Science, vol. 214, no. 1–4, pp. 304–311, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. S.-H. Hwang, J.-H. Song, and Y.-S. Kim, “Effects of carbon content on its dissolution in to molten aluminum alloy,” Materials Science and Engineering, vol. 390, pp. 437–443, 2005. View at Google Scholar
  21. D. R. G. Achar, J. Ruge, and S. Sundaresan, “Metallurgical and mechanical investigations of aluminum-steel fusion welds,” Aluminium, vol. 56, no. 6, pp. 391–397, 1980. View at Google Scholar · View at Scopus