Table of Contents
Journal of Coatings
Volume 2013, Article ID 981515, 6 pages
http://dx.doi.org/10.1155/2013/981515
Research Article

A Study on the Thermodynamics of Grain Growth in R.F. Magnetron Sputtered NiO Thin Films

1Department of Physics, Catholicate College, Pathanamthitta, Kerala 689 645, India
2Department of Physics, D.B. College, Sasthamcotta, Kollam, Kerala 690 521, India

Received 22 March 2013; Revised 12 July 2013; Accepted 25 July 2013

Academic Editor: Mariana Braic

Copyright © 2013 I. Dhanya and B. Sasi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Passerini and B. Scrosati, “Electrochromism of thin-film nickel oxide electrodes,” Solid State Ionics, vol. 53–56, no. 1, pp. 520–524, 1992. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Wakefield, P. J. Dobson, Y. Y. Foo, A. Loni, A. Simons, and J. L. Hutchison, “The fabrication and characterization of nickel oxide films and their application as contacts to polymer/porous silicon electroluminescent devices,” Semiconductor Science and Technology, vol. 12, no. 10, pp. 1304–1309, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Adler and J. Feinleibi, “Electrical and optical properties of narrow-band materials,” Physical Review B, vol. 2, pp. 3112–3134, 1970. View at Google Scholar
  4. E. L. Miller and R. E. Rochilean, “Electrochemical and electrochromic behavior of reactively sputtered nickel oxide,” Journal of the Electrochemical Society, vol. 144, no. 6, pp. 1995–2003, 1997. View at Publisher · View at Google Scholar
  5. H. Sato, T. Minami, S. Takata, and T. Yamada, “Transparent conducting p-type NiO thin films prepared by magnetron sputtering,” Thin Solid Films, vol. 236, no. 1-2, pp. 27–31, 1993. View at Google Scholar · View at Scopus
  6. Y. Tawada, H. Okamoto, and Y. Hamakawa, “a-SiC:H/a-Si:H heterojunction solar cell having more than 7.1% conversion efficiency,” Applied Physics Letters, vol. 39, no. 3, p. 237, 1981. View at Publisher · View at Google Scholar
  7. B. Sasi and K. G. Gopchandran, “Nanostructured mesoporous nickel oxide thin films,” Nanotechnology, vol. 18, no. 11, Article ID 115613, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Fasaki, A. Giannoudakos, M. Stamataki et al., “Nickel oxide thin films synthesized by reactive pulsed laser deposition: characterization and application to hydrogen sensing,” Applied Physics A, vol. 91, no. 3, pp. 487–492, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Sasi, K. G. Gopchandran, P. K. Manoj, P. Koshy, P. Prabhakara Rao, and V. K. Vaidyan, “Preparation of transparent and semiconducting NiO films,” Vacuum, vol. 68, no. 2, pp. 149–154, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Lunkenheimer, A. Loidl, C. R. Ottermann, and K. Bange, “Correlated barrier hopping in NiO films,” Physical Review B, vol. 44, no. 11, pp. 5927–5930, 1991. View at Publisher · View at Google Scholar · View at Scopus
  11. A. J. Varkey and A. F. Fort, “Solution growth technique for deposition of nickel oxide thin films,” Thin Solid Films, vol. 235, no. 1-2, pp. 47–50, 1993. View at Google Scholar · View at Scopus
  12. J. S. E. M. Svensson and C. G. Granqvist, “Electrochromic hydrated nickel oxide coatings for energy efficient windows: optical properties and coloration mechanism,” Applied Physics Letters, vol. 49, no. 23, p. 1566. View at Publisher · View at Google Scholar
  13. S. Yamada, T. Yoshioka, M. Miyashita, K. Urabe, and M. Kitao, “Electrochromic properties of sputtered nickel-oxide films,” Journal of Applied Physics, vol. 63, no. 6, pp. 2116–2119, 1988. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Iida and R. Nishikawa, “A thin film of an Ni-NiO heterogeneous system for an optical recording medium,” Japanese Journal of Applied Physics, vol. 33, pp. 3952–3959, 1994. View at Google Scholar
  15. B. Sasi and K. G. Gopchandran, “Preparation and characterization of nanostructured NiO thin films by reactive-pulsed laser ablation technique,” Solar Energy Materials and Solar Cells, vol. 91, no. 15-16, pp. 1505–1509, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. M. Lu, W. S. Hwang, J. S. Yang, and H. C. Chuang, “Properties of nickel oxide thin films deposited by RF reactive magnetron sputtering,” Thin Solid Films, vol. 420-421, pp. 54–61, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Sato, T. Minami, S. Takata, and T. Yamada, “Transparent conducting p-type NiO thin films prepared by magnetron sputtering,” Thin Solid Films, vol. 236, no. 1-2, pp. 27–31, 1993. View at Google Scholar · View at Scopus
  18. I. Hotovy, J. Huran, L. Spiess, J. Liday, H. Sitter, and Š. Hašcík, “The influence of process parameters and annealing temperature on the physical properties of sputtered NiO thin films,” Vacuum, vol. 69, no. 1–3, pp. 237–242, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. F. F. Ferreira, M. H. Tabacniks, M. C. A. Fantini, I. C. Faria, and A. Gorenstein, “Electrochromic nickel oxide thin films deposited under different sputtering conditions,” Solid State Ionics, vol. 86-88, no. 2, pp. 971–976, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. J.-L. Yang, Y.-S. Lai, and J. S. Chen, “Effect of heat treatment on the properties of non-stoichiometric p-type nickel oxide films deposited by reactive sputtering,” Thin Solid Films, vol. 488, no. 1-2, pp. 242–246, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Kittel, “Indirect Exchange Interactions in Metals,” Solid State Physics, vol. 22, pp. 1–26, 1969. View at Publisher · View at Google Scholar · View at Scopus
  22. Z. W. Chen, J. K. L. Lai, and C. H. Shek, “Insights into microstructural evolution from nanocrystalline SnO2 thin films prepared by pulsed laser deposition,” Physical Review B, vol. 70, no. 16, Article ID 165314, 2004. View at Google Scholar
  23. I. Dhanya and C. S. Menon, “Annealing effects on electrical, optical and structural properties of semiconducting transparent tetra-tert-butyl 2,3 naphthalocyanine thinfilms,” Journal of Non-Crystalline Solids, vol. 357, no. 21, pp. 3631–3636, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Hotovy, J. Huran, and L. Spiess, “Characterization of sputtered NiO films using XRD and AFM,” Journal of Materials Science, vol. 39, no. 7, pp. 2609–2612, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Puspharajah, S. Radhakrishna, and A. K. Arof, “Transparent conducting lithium-doped nickel oxide thin films by spray pyrolysis technique,” Journal of Materials Science, vol. 32, no. 11, pp. 3001–3006, 1997. View at Google Scholar · View at Scopus
  26. J. Tauc, Amorphous and Liquid Semiconductors, Plennm, London, UK, 1974.
  27. J. I. Panaove, Optical Processes in Semiconductors, Prentice Hall, Upper Saddle River, NJ, USA, 1971.
  28. A. B. Kunz, “Electronic structure of NiO,” Journal of Physics C, vol. 14, no. 16, p. 445, 1981. View at Publisher · View at Google Scholar