Table of Contents
Journal of Coatings
Volume 2014 (2014), Article ID 759073, 8 pages
Research Article

Utilizing Extracted Fungal Pigments for Wood Spalting: A Comparison of Induced Fungal Pigmentation to Fungal Dyeing

Department of Wood Science and Engineering, 119 Richardson Hall, Oregon State University, Corvallis, OR 97331, USA

Received 28 May 2014; Revised 24 September 2014; Accepted 24 September 2014; Published 7 October 2014

Academic Editor: Mangala Singh

Copyright © 2014 Sara C. Robinson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The lengthy time periods required by current spalting methods prohibit the economically viable commercialization of spalted wood on a large scale. This work aimed to compare the effects of induced spalting in 16 Pacific Northwest woods using three common spalting fungi, Chlorociboria aeruginosa, Scytalidium cuboideum, and Scytalidium ganodermophthorum, with the significantly less time-consuming treatment of these woods using dichloromethane-extracted green, red, and yellow pigments from the same fungi. For pigment extracts, the dosage required for a pigment to internally color various wood species to 30% internal coverage was investigated. With few exceptions, treatment with pigment extracts outperformed induced spalting in terms of percent internal color coverage. Cottonwood consistently performed best with all three pigment solutions, although chinkapin performed as well as cottonwood with the red pigment, and Port Orford cedar performed as well with the yellow pigment. While no wood species showed 30% internal color coverage with the green pigment solution, a number of additional species, including pacific silver fir, madrone, dogwood, and mountain hemlock showed internal color coverage on the order of 20–30% for red and/or yellow. Cottonwood was determined to be the best suited wood species for this type of spalting application.