Table of Contents
Journal of Coatings
Volume 2014, Article ID 905903, 11 pages
http://dx.doi.org/10.1155/2014/905903
Research Article

Hydrogenated Silicon Carbide Thin Films Prepared with High Deposition Rate by Hot Wire Chemical Vapor Deposition Method

1School of Energy Studies, University of Pune, Pune 411 007, India
2Department of Physics, Modern College, Pune 411 005, India
3UGC-DAE-CSR, University Campus, Khandawa Road, Indore 452 017, India
4Department of Physics, University of Pune, Pune 411 007, India

Received 28 April 2013; Revised 23 September 2013; Accepted 15 October 2013; Published 4 February 2014

Academic Editor: Mariana Braic

Copyright © 2014 M. M. Kamble et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. S. Chang, P. L. Gender, and J. H. Jou, “Thermal, mechanical and chemical effects in the degradation of the plasma-deposited α-SiC:H passivation layer in a multilayer thin-film device,” Journal of Materials Science, vol. 26, no. 7, pp. 1882–1890, 1991. View at Google Scholar
  2. Y. Matsumoto, G. Hirata, H. Takakura, H. Okamoto, and Y. Hamakawa, “A new type of high efficiency with a low-cost solar cell having the structure of a μc-SiC/polycrystalline silicon heterojunction,” Journal of Applied Physics, vol. 67, no. 10, pp. 6538–6543, 1990. View at Publisher · View at Google Scholar · View at Scopus
  3. U. Coscia, G. Ambrosone, C. Minarini et al., “Laser annealing of hydrogenated amorphous silicon-carbon films,” Thin Solid Films, vol. 453-454, pp. 7–12, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Windischmann, “Intrinsic stress and mechanical properties of hydrogenated silicon carbide produced by plasma-enhanced chemical vapor deposition,” Journal of Vacuum Science and Technology A, vol. 9, no. 4, pp. 2459–2463, 1991. View at Google Scholar
  5. S. X. Li, Y. Q. Cao, J. Xu, Y. J. Rui, W. Li, and K. J. Chen, “Hydrogenated amorphous silicon-carbide thin films with high photo-sensitivity prepared by layer-by-layer hydrogen annealing technique,” Applied Surface Science, vol. 270, pp. 287–291, 2013. View at Google Scholar
  6. C. Ricciardi, G. Fanchini, and P. Mandracci, “Physical properties of ECR-CVD polycrystalline SiC films for micro-electro-mechanical systems,” Diamond and Related Materials, vol. 12, no. 3–7, pp. 1236–1240, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. S. M. Rajab, I. C. Oliveira, M. Massi, H. S. Maciel, S. G. dos Santos Filho, and R. D. Mansano, “Effect of the thermal annealing on the electrical and physical properties of SiC thin films produced by RF magnetron sputtering,” Thin Solid Films, vol. 515, no. 1, pp. 170–175, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Soto, E. C. Samano, R. Machorro, and L. Cota, “Growth of SiC and SiCxNy films by pulsed laser ablation of SiC in Ar and N2 environments,” Journal of Vacuum Science and Technology A, vol. 16, no. 3, pp. 1311–1315, 1998. View at Google Scholar · View at Scopus
  9. Q. Wang, S. Y. Fu, S. L. Qu, and W. J. Liu, “Enhanced photoluminescence from Si+ and C+ ions co-implanted porous silicon formed by electrochemical anodization,” Solid State Communications, vol. 144, no. 7-8, pp. 277–281, 2007. View at Google Scholar
  10. H. Ishihara, M. Murano, T. Watahiki, A. Yamada, M. Konagai, and Y. Nakamura, “Growth of strain relaxed Si1-yCy on Si buffer layer by gas-source MBE,” Thin Solid Films, vol. 508, no. 1-2, pp. 99–102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Mandracci, Growth and characterization of SiC thin films by a plasma assisted technique for electronic applications [Ph.D. thesis], Trento University, Trento, Italy, 2001.
  12. Y. Avigal, M. Schieber, and R. Levin, “The growth of hetero-epitaxial SiC films by pyrolysis of various alkyl-silicon compounds,” Journal of Crystal Growth, vol. 24-25, pp. 188–192, 1974. View at Google Scholar · View at Scopus
  13. K. Takahashi, S. Nishino, J. Saraie, and K. Harada, in SPP Amorphous and Crystalline Silicon Carbide IV, C. Y. Yang, M. M. Rahaman, and G. L. Harris, Eds., pp. 71–78, Springer, Berlin, Germany, 1992.
  14. C. Jacob, P. Pirouz, and S. Nishino, “Low temperature selective and lateral epitaxial growth of silicon carbide on patterned silicon substrates,” Materials Science Forum, vol. 353–356, pp. 127–130, 2001. View at Publisher · View at Google Scholar
  15. C. Ricciardi, A. Primiceli, G. Germani, A. Rusconi, and F. Giorgis, “Microstructure analysis of a-SiC:H thin films grown by high-growth-rate PECVD,” Journal of Non-Crystalline Solids, vol. 352, no. 9–20, pp. 1380–1383, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Tabata, Y. Komura, T. Narita, and A. Kondo, “Growth of silicon carbide thin films by hot-wire chemical vapor deposition from SiH4/CH4/H2,” Thin Solid Films, vol. 517, no. 12, pp. 3516–3519, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Klein, R. Carius, F. Finger, and L. Houben, “Low substrate temperature deposition of crystalline SiC using HWCVD,” Thin Solid Films, vol. 501, no. 1-2, pp. 169–172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Chen, Y. Huang, A. Dasgupta et al., “Microcrystalline silicon carbide window layers in thin film silicon solar cells,” Solar Energy Materials and Solar Cells, vol. 98, pp. 370–378, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. M. R. Badaruddin, M. R. Muhamad, and S. A. Rahman, “Multi-phase structured silicon carbon nitride thin films prepared by hot-wire chemical vapour deposition,” Thin Solid Films, vol. 519, no. 15, pp. 5082–5085, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Chen, F. Köhler, A. Heidt, Y. Huang, F. Finger, and R. Carius, “Microstructure and electronic properties of microcrystalline silicon carbide thin films prepared by hot-wire CVD,” Thin Solid Films, vol. 519, no. 14, pp. 4511–4515, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Wu, H. Shen, B. Cheng, Y. Pan, B. Liu, and J. Shen, “Formation of α-Si1−xCx:H and nc-SiC films grown by HWCVD under different process pressure,” Applied Surface Science, vol. 258, no. 3, pp. 999–1003, 2011. View at Publisher · View at Google Scholar
  22. F. S. Tehrani, B. T. Goh, M. R. Muhamad, and S. A. Rahman, “Pressure dependent structural and optical properties of silicon carbide thin films deposited by hot wire chemical vapor deposition from pure silane and methane gases,” Journal of Materials Science, vol. 24, no. 4, pp. 1361–1368, 2013. View at Publisher · View at Google Scholar
  23. A. Tabata and Y. Komura, “Preparation of nanocrystalline cubic silicon carbide thin films by hot-wire CVD at various filament-to-substrate distances,” Surface and Coatings Technology, vol. 201, no. 22-23, pp. 8986–8990, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. V. S. Waman, M. M. Kamble, M. R. Pramod et al., “Nanostructured hydrogenated silicon films by hot-wire chemical vapor deposition: the influence of substrate temperature on material properties,” Journal of Nano and Electronic Physics, vol. 3, p. 590, 2011. View at Google Scholar
  25. R. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” Journal of Physics E, vol. 16, no. 12, p. 1214, 1983. View at Publisher · View at Google Scholar
  26. S. Kasap and P. Capper, Springer Handbook of Electronic and Photonic Materials, Springer, New York, NY, USA, 2006.
  27. M. Mori, A. Tabata, and T. Mizutani, “Properties of hydrogenated amorphous silicon carbide films prepared at various hydrogen gas flow rates by hot-wire chemical vapor deposition,” Thin Solid Films, vol. 501, no. 1-2, pp. 177–180, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. Q. Cheng, J. Long, Z. Ni, A. Rider, and K. Ostrikov, “High-rate, low-temperature synthesis of composition controlled hydrogenated amorphous silicon carbide films in low-frequency inductively coupled plasmas,” Journal of Physics D, vol. 41, no. 5, Article ID 055406, 2008. View at Publisher · View at Google Scholar
  29. J. Karimi, A. B. A. Dow, and N. P. Kherani, “Stoichiometric amorphous hydrogenated silicon carbide thin film synthesis using DC-saddle plasma enhanced chemical vapour deposition,” in Proceedings of the IEEE 5th International Nanoelectronics Conference (INEC '13), pp. 160–163, Singapore, January 2013.
  30. G. Lucovsky, R. J. Nemanich, and J. C. Knights, “Structural interpretation of the vibrational spectra of a-Si: H alloys,” Physical Review B, vol. 19, no. 4, pp. 2064–2073, 1979. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. H. Wang, J. Lin, and C. H. A. Huan, “Multiphase structure of hydrogenated amorphous silicon carbide thin films,” Materials Science and Engineering B, vol. 95, no. 1, pp. 43–50, 2002. View at Publisher · View at Google Scholar
  32. A. Tabata, M. Kuroda, M. Mori, T. Mizutani, and Y. Suzuoki, “Band gap control of hydrogenated amorphous silicon carbide films prepared by hot-wire chemical vapor deposition,” Journal of Non-Crystalline Solids, vol. 338–340, no. 1, pp. 521–524, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Ambrosone, P. Capezzuto, S. Catalanotti, U. Coscia, and S. Mormone, “Optical, electrical and structural properties of hydrogenated amorphous Si-C alloys deposited by different hydrocarbon gas mixtures,” Philosophical Magazine B, vol. 80, no. 4, pp. 497–506, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Kuenle, S. Janz, O. Eibl, C. Berthold, V. Presser, and K.-G. Nickel, “Thermal annealing of SiC thin films with varying stoichiometry,” Materials Science and Engineering B, vol. 159-160, pp. 355–360, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Kaneko, D. Nemoto, A. Horiguchi, and N. Miyakawa, “FTIR analysis of a-SiC:H films grown by plasma enhanced CVD,” Journal of Crystal Growth, vol. 275, no. 1-2, pp. e1097–e1101, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. M. T. Kim and J. Lee, “Characterization of amorphous SiC:H films deposited from hexamethyldisilazane,” Thin Solid Films, vol. 303, no. 1-2, pp. 173–179, 1997. View at Google Scholar · View at Scopus
  37. M. M. Brodsky, M. Catdona, and J. J. Canmo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Physical Review B, vol. 16, no. 8, pp. 3556–3571, 1977. View at Publisher · View at Google Scholar
  38. S. Ray, D. Das, and A. K. Barua, “Infrared vibrational spectra of hydrogenated amorphous silicon carbide thin films prepared by glow discharge,” Solar Energy Materials, vol. 15, no. 1, pp. 45–57, 1987. View at Publisher · View at Google Scholar
  39. K. Basa and F. W. Smith, “Infrared study of amorphous crystalline phase transition in an annealed amorphous hydrogenated silicon carbon alloy film,” Materials Research Society Proceedings, vol. 162, p. 439, 1990. View at Publisher · View at Google Scholar
  40. H. Shanks, C. J. Fang, L. Ley, M. Cardona, F. J. Desmond, and S. Kalbitzer, “Infrared spectrum and structure of hydrogenated amorphous silicon,” Physica Status Solidi B, vol. 100, no. 1, pp. 43–56, 1980. View at Google Scholar · View at Scopus
  41. F. S. Tehrani, M. R. Badaruddin, R. G. Rahbari, M. R. Muhamad, and S. A. Rahman, “Low-pressure synthesis and characterization of multiphase SiC by HWCVD using CH4/SiH4,” Vacuum, vol. 86, no. 8, pp. 1150–1154, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. B. P. Swain and R. O. Dusane, “Multiphase structure of hydrogen diluted a-SiC:H deposited by HWCVD,” Materials Chemistry and Physics, vol. 99, no. 2-3, pp. 240–246, 2006. View at Publisher · View at Google Scholar
  43. G. Y. Xu, T. M. Wang, G. H. Li, Z. X. Ma, and G. Z. Zheng, “Raman spectra of nanocrystalline silicon films,” Chinese Journal of Semiconductors, vol. 21, pp. 1170–176, 2000. View at Google Scholar
  44. S. Nakashima and H. Harima, “Raman investigation of SiC polytypes,” Physica Status Solidi A, vol. 162, no. 1, pp. 39–64, 1997. View at Google Scholar · View at Scopus
  45. T. Tanaka, E. Maruyama, T. Shimida, and H. Okamoto, Amorphous Silicon, John Wiley and Sons, Chichester, UK, 1999.
  46. K. Chew, R. Rusli, S. F. Yoon et al., “Hydrogenated amorphous silicon carbide deposition using electron cyclotron resonance chemical vapor deposition under high microwave power and strong hydrogen dilution,” Journal of Applied Physics, vol. 92, no. 5, p. 2937, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Karch, P. Pavone, W. Windl, O. Schütt, and D. Strauch, “Ab initio calculation of structural and lattice-dynamical properties of silicon carbide,” Physical Review B, vol. 50, no. 23, pp. 17054–17063, 1994. View at Publisher · View at Google Scholar · View at Scopus
  48. M. A. El Khakani, M. Chaker, A. Jean et al., “Effect of rapid thermal annealing on both the stress and the bonding states of a-SiC:H films,” Journal of Applied Physics, vol. 74, no. 4, pp. 2834–2840, 1993. View at Publisher · View at Google Scholar · View at Scopus
  49. I. Soloman, M. P. Schmidt, C. Sénémaud, and K. M. Driss, “Band structure of carbonated amorphous silicon studied by optical, photoelectron, and x-ray spectroscopy,” Physical Review B, vol. 38, pp. 13263–13270, 1988. View at Publisher · View at Google Scholar
  50. I. Solomon, M. P. Schmidt, and H. Tran-Quoc, “Selective low-power plasma decomposition of silane-methane mixtures for the preparation of methylated amorphous silicon,” Physical Review B, vol. 38, no. 14, pp. 9895–9901, 1988. View at Publisher · View at Google Scholar
  51. S. E. Hicks, A. G. Fitzgerald, S. H. Baker, and T. J. Dines, “The structural, chemical and compositional nature of amorphous silicon carbide films,” Philosophical Magazine B, vol. 62, no. 2, pp. 193–212, 1990. View at Publisher · View at Google Scholar
  52. W. Y. Lee, “X-ray photoelectron spectroscopy and Auger electron spectroscopy studies of glow discharge Si1−x C x :H films,” Journal of Applied Physics, vol. 51, no. 6, p. 3365, 1980. View at Publisher · View at Google Scholar
  53. L. Smith and K. M. J. Black, “Characterization of the treated surfaces of silicon alloyed pyrolytic carbon and SiC,” Journal of Vacuum Science and Technology A, vol. 2, no. 2, p. 744, 1984. View at Publisher · View at Google Scholar
  54. W. K. Choi, F. L. Loo, C. H. Ling, F. C. Loh, and K. L. Tan, “Structural and electrical studies of radio frequency sputtered hydrogenated amorphous silicon carbide films,” Journal of Applied Physics, vol. 78, no. 12, pp. 7289–7294, 1995. View at Publisher · View at Google Scholar · View at Scopus
  55. E. Gat, M. A. E. Khakani, M. Chaker et al., “Study of the effect of composition on the microstructural evolution of a-SixC1-x:H PECVD films. IR absorption and XPS characterizations,” Journal of Materials Research, vol. 7, no. 9, pp. 2478–2487, 1992. View at Google Scholar · View at Scopus
  56. R. C. Lee, C. R. Aita, and N. C. Tran, “The air-exposed surface of sputter deposited silicon carbide studied by x-ray photoelectron spectroscopy,” Journal of Vacuum Science and Technology A, vol. 9, no. 3, p. 1351, 1991. View at Publisher · View at Google Scholar
  57. M. Katiyar, Y. H. Yang, and J. R. Abelson, “Si–C–H bonding in amorphous Si1−x C x :H film/substrate interfaces determined by real time infrared absorption during reactive magnetron sputter deposition,” Journal of Applied Physics, vol. 78, no. 3, p. 1659, 1995. View at Publisher · View at Google Scholar
  58. J. Tauc, Amorphous and Liquid Semiconductors, Plenum Publication, London, UK, 1974.
  59. T. Rajagopalan, X. Wang, B. Lahlouh, C. Ramkumar, P. Dutta, and S. Gangopadhyay, “Low temperature deposition of nanocrystalline silicon carbide films by plasma enhanced chemical vapor deposition and their structural and optical characterization,” Journal of Applied Physics, vol. 94, no. 8, pp. 5252–5260, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. S. H. Baker, W. E. Spear, and R. A. G. Gibson, “Electronic and optical properties of a-Si1-xCx films prepared from a H2-diluted mixture of SiH4 and CH4,” Philosophical Magazine B, vol. 62, no. 2, pp. 213–223, 1990. View at Publisher · View at Google Scholar
  61. J. P. Conde, V. Chu, M. F. da Silva et al., “Optoelectronic and structural properties of amorphous silicon-carbon alloys deposited by low-power electron-cyclotron resonance plasma-enhanced chemical-vapor deposition,” Journal of Applied Physics, vol. 85, no. 6, pp. 3327–3338, 1999. View at Google Scholar · View at Scopus
  62. T. Saitoh, T. Shimada, M. Migitaka, and Y. Tarui, “Preparation and properties of microcrystalline silicon films using photochemical vapor deposition,” Journal of Non-Crystalline Solids, vol. 59-60, no. 2, pp. 715–718, 1983. View at Google Scholar · View at Scopus
  63. S. C. Saha, A. K. Barua, and S. Ray, “The role of hydrogen dilution and radio frequency power in the formation of microcrystallinity of n-type Si:H thin film,” Journal of Applied Physics, vol. 74, no. 9, pp. 5561–5568, 1993. View at Publisher · View at Google Scholar · View at Scopus