Table of Contents
Journal of Composites
Volume 2013, Article ID 674073, 6 pages
http://dx.doi.org/10.1155/2013/674073
Research Article

Studies on Carbon-Fly Ash Composites with Chopped PANOX Fibers

1Center for Interdisciplinary Studies in Science and Technology (CISST), Sardar Patel University, Vallabh Vidyanagar 388 120, India
2Department of Materials Science, Sardar Patel University, Vallabh Vidyanagar 388 120, India

Received 13 August 2013; Revised 17 October 2013; Accepted 6 November 2013

Academic Editor: Masamichi Kawai

Copyright © 2013 Rakesh V. Patel and S. Manocha. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Chemical analysis and morphological studies of fly ash reveals the complex chemical constituents present as spherical particles with diameter of less than 25 μm. The constituents of fly ash are silica, alumina, iron oxide, titanium dioxide, calcium and magnesium oxide, and other trace elements. The use of thermosetting as well thermoplastic polymer matrix has been made by several workers to develop polymer matrix fly ash particulate composites by using the hard and abrasive properties of fly ash and lightweight of polymers. Such composites have poor mechanical strength, fracture toughness, and thermal stability. To overcome these shortcomings, in carbonaceous matrix, the carbon fibers were added as additional reinforcement along with the fly ash. The composites were developed with two different methods known as Dry method and Wet method. The processing parameters such as temperature and pressure were optimized in establishing the carbon matrix. Physical, thermal, and mechanical characteristics were studied. The microstructures of composites show good compatibility between fly ash and fibers with the carbon matrix. These composites have higher strength, thermal stability, and toughness as compared to polymer matrix fly ash particulate composites.