Table of Contents
Journal of Composites
Volume 2014 (2014), Article ID 987956, 7 pages
http://dx.doi.org/10.1155/2014/987956
Research Article

Hybrid Fibre Polylactide Acid Composite with Empty Fruit Bunch: Chopped Glass Strands

1Department of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
2Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Baru Barat, 31900 Kampar, Perak, Malaysia

Received 26 June 2014; Revised 27 September 2014; Accepted 29 September 2014; Published 14 October 2014

Academic Editor: Hui Shen Shen

Copyright © 2014 K. Y. Tshai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Karina, H. Onggo, A. H. D. Abdullah, and A. Syampurwadi, “Effect of oil palm empty fruit bunch fiber on the physical and mechanical properties of fiber glass reinforced polyester resin,” Journal of Biological Sciences, vol. 8, no. 1, pp. 101–106, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Kale, R. Auras, S. P. Singh, and R. Narayan, “Biodegradability of polylactide bottles in real and simulated composting conditions,” Polymer Testing, vol. 26, no. 8, pp. 1049–1061, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Auras, S. P. Singh, and J. Singh, “Performance evaluation of PLA against existing PET and PS containers,” Journal of Testing and Evaluation, vol. 34, no. 6, 2006. View at Publisher · View at Google Scholar
  4. V. Siracusa, P. Rocculi, S. Romani, and M. D. Rosa, “Biodegradable polymers for food packaging: a review,” Trends in Food Science and Technology, vol. 19, no. 12, pp. 634–643, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. O. Faruk, A. K. Bledzki, H.-P. Fink, and M. Sain, “Biocomposites reinforced with natural fibers: 2000-2010,” Progress in Polymer Science, vol. 37, no. 11, pp. 1552–1596, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. A. K. Mohanty, M. Misra, and G. Hinrichsen, “Biofibres, biodegradable polymers and biocomposites: an overview,” Macromolecular Materials and Engineering, vol. 276-277, no. 1, pp. 1–24, 2000. View at Google Scholar
  7. S. Shinoj, R. Visvanathan, S. Panigrahi, and M. Kochubabu, “Oil palm fiber (OPF) and its composites: a review,” Industrial Crops and Products, vol. 33, no. 1, pp. 7–22, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. F. C. Campbell, Manufacturing Processes for Advanced Composites, Elsevier, 2004.
  9. A. B. A. Hariharan and H. P. S. A. Khalil, “Lignocellulose-based hybrid bilayer laminate composite: part I—studies on tensile and impact behavior of oil palm fiber-glass fiber-reinforced epoxy resin,” Journal of Composite Materials, vol. 39, no. 8, pp. 663–684, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. H. D. Rozman, G. S. Tay, R. N. Kumar, A. Abusamah, H. Ismail, and Z. A. Mohd. Ishak, “Polypropylene-oil palm empty fruit bunch-glass fibre hybrid composites: a preliminary study on the flexural and tensile properties,” European Polymer Journal, vol. 37, no. 6, pp. 1283–1291, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. J. L. Thomason, “The influence of fibre length, diameter and concentration on the impact performance of long glass-fibre reinforced polyamide 6,6,” Composites A: Applied Science and Manufacturing, vol. 40, no. 2, pp. 114–124, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. Natureworks PLA Polymer 3052D Technical Data Sheet: Injection Molding Process Guide, NW3052D_120213V1, NatureWorks LLC, Minnetonka, 1-3, 20 13.
  13. R. Mahjoub, J. Bin Mohamad Yatim, and A. R. Mohd Sam, “A review of structural performance of oil palm empty fruit bunch fiber in polymer composites,” Advances in Materials Science and Engineering, vol. 2013, Article ID 415359, 9 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. M. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, “Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: a comparative study,” Composites Science and Technology, vol. 66, no. 11-12, pp. 1813–1824, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. C. C. Chamis, “Mechanics of load transfer at the fiber/matrix interface,” NASA TN D-6588, National Aeronautics and Space Administration, Washington, D. C., USA, 1972. View at Google Scholar
  16. I. Aranberri-Askargorta, T. Lampke, and A. Bismarck, “Wetting behavior of flax fibers as reinforcement for polypropylene,” Journal of Colloid and Interface Science, vol. 263, no. 2, pp. 580–589, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Hansen, Hansen Solubility Parameters: A User's Handbook, CRC Press, Boca Raton, Fla, USA, 2nd edition, 2007.
  18. T. S. Lee, A. R. Rahmat, and W. A. W. A. Rahman, Polylactic Acid: PLA Biopolymer Technology and Applications, Technology & Engineering, William Andrew, 2012.
  19. R. Casasola, N. L. Thomas, A. Trybala, and S. Georgiadou, “Electrospun poly lactic acid (PLA) fibres: effect of different solvent systems on fibre morphology and diameter,” Polymer, vol. 55, no. 18, pp. 4728–4737, 2014. View at Publisher · View at Google Scholar
  20. Y. Byun, S. Whiteside, R. Thomas, M. Dharman, J. Hughes, and Y. T. Kim, “The effect of solvent mixture on the properties of solvent cast polylactic acid (PLA) film,” Journal of Applied Polymer Science, vol. 124, no. 5, pp. 3577–3582, 2012. View at Publisher · View at Google Scholar · View at Scopus