Table of Contents
Journal of Cancer Research
Volume 2013 (2013), Article ID 452809, 6 pages
http://dx.doi.org/10.1155/2013/452809
Research Article

The Breakage-Fusion-Bridge Cycle Producing MLL Amplification in a Case of Myelodysplastic Syndrome

1Victorian Cancer Cytogenetics Service, St Vincent’s Hospital, P.O. Box 2900, Fitzroy, VIC 3065, Australia
2Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia

Received 23 May 2013; Accepted 24 June 2013

Academic Editor: Mario Scartozzi

Copyright © 2013 Lan Ta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. M. Bailey and J. P. Murnane, “Telomeres, chromosome instability and cancer,” Nucleic Acids Research, vol. 34, no. 8, pp. 2408–2417, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. B. McClintock, “The stability of broken ends of chromosomes in Zea Mays,” Genetics, vol. 26, no. 2, pp. 234–282, 1941. View at Google Scholar
  3. C. H. Jones, C. Pepper, and D. M. Baird, “Telomere dysfunction and its role in haematological cancer,” British Journal of Haematology, vol. 156, no. 5, pp. 573–587, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. J. P. Murnane, “Telomere dysfunction and chromosome instability,” Mutation Research, vol. 730, no. 1-2, pp. 28–36, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. A. W. I. Lo, L. Sabatier, B. Fouladi, G. Pottiert, M. Ricoul, and J. P. Murnane, “DNA amplification by breakage/fusion/bridge cycles initiated by spontaneous telomere loss in a human cancer cell line,” Neoplasia, vol. 4, no. 6, pp. 531–538, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. B. T. Letsolo, J. Rowson, and D. M. Baird, “Fusion of short telomeres in human cells is characterized by extensive deletion and microhomology, and can result in complex rearrangements,” Nucleic Acids Research, vol. 38, no. 6, pp. 1841–1852, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Gisselsson, M. Höglund, F. Mertens et al., “The structure and dynamics of ring chromosomes in human neoplastic and non-neoplastic cells,” Human Genetics, vol. 104, no. 4, pp. 315–325, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Chakraborty, J. M. Stark, C. L. Sun et al., “Chronic myelogenous leukemia stem and progenitor cells demonstrate chromosomal instability related to repeated breakage-fusion-bridge cycles mediated by increased nonhomologous end joining,” Blood, vol. 119, no. 26, pp. 6187–6197, 2012. View at Publisher · View at Google Scholar
  9. J. P. Murnane, “Telomere loss as a mechanism for chromosome instability in human cancer,” Cancer Research, vol. 70, no. 11, pp. 4255–4259, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Mohamed, “MLL amplification in leukemia,” 2011, http://atlasgeneticsoncology.org//Anomalies/MLLampliID1547.html.
  11. K. C. Rayeroux and L. J. Campbell, “Gene amplification in myeloid leukemias elucidated by fluorescence in situ hybridization,” Cancer Genetics and Cytogenetics, vol. 193, no. 1, pp. 44–53, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. K. Andersen and J. Pedersen-Bjergaard, “Increased frequency of dicentric chromosomes in therapy-related MDS and AML compared to de novo disease is significantly related to previous treatment with alkylating agents and suggests a specific susceptibility to chromosome breakage at the centromere,” Leukemia, vol. 14, no. 1, pp. 105–111, 2000. View at Google Scholar · View at Scopus
  13. R. N. MacKinnon, C. Patsouris, I. Chudoba, and L. J. Campbell, “A FISH comparison of variant derivatives of the recurrent dic(17;20) of myelodysplastic syndromes and acute myeloid leukemia: obligatory retention of genes on 17p and 20q may explain the formation of dicentric chromosomes,” Genes Chromosomes and Cancer, vol. 46, no. 1, pp. 27–36, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. B. A. Sullivan and H. F. Willard, “Stable dicentric X chromosomes with two functional centromeres,” Nature Genetics, vol. 20, no. 3, pp. 227–228, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. R. N. MacKinnon and L. J. Campbell, “A comparison of two contrasting recurrent isochromosomes 20 found in myelodysplastic syndromes suggests that retention of proximal 20q is a significant factor in myeloid malignancies,” Cancer Genetics and Cytogenetics, vol. 163, no. 2, pp. 176–179, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. W. C. Earnshaw and B. R. Migeon, “Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome,” Chromosoma, vol. 92, no. 4, pp. 290–296, 1985. View at Google Scholar · View at Scopus
  17. L. G. Schaffer, M. L. Slovak, and L. J. Campbell, Eds., ISCN 2009: An International System for Human Cytogenetic Nomenclature, Karger, Basel, Switzerland, 2009.
  18. R. W. Frenck Jr., E. H. Blackburn, and K. M. Shannon, “The rate of telomere sequence loss in human leukocytes varies with age,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 10, pp. 5607–5610, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Gisselsson, L. Pettersson, M. Höglund et al., “Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 10, pp. 5357–5362, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Britt-Compton, T. T. Lin, G. Ahmed et al., “Extreme telomere erosion in ATM-mutated and 11q-deleted CLL patients is independent of disease stage,” Leukemia, vol. 26, no. 4, pp. 826–830, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. R. T. Calado, J. N. Cooper, H. M. Padilla-Nash et al., “Short telomeres result in chromosomal instability in hematopoietic cells and precede malignant evolution in human aplastic anemia,” Leukemia, vol. 26, no. 4, pp. 700–707, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. P. J. Campbell, S. Yachida, L. J. Mudie et al., “The patterns and dynamics of genomic instability in metastatic pancreatic cancer,” Nature, vol. 467, no. 7319, pp. 1109–1113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Leone, L. Fianchi, L. Pagano, and M. T. Voso, “Incidence and susceptibility to therapy-related myeloid neoplasms,” Chemico-Biological Interactions, vol. 184, no. 1-2, pp. 39–45, 2010. View at Publisher · View at Google Scholar · View at Scopus