Table of Contents Author Guidelines Submit a Manuscript
Journal of Drug Delivery
Volume 2011 (2011), Article ID 203676, 7 pages
Research Article

Cell Uptake and Validation of Novel PECs for Biomedical Applications

1NNL, Institute of Nanoscience CNR, Street Arnesano, 73100 Lecce, Italy
2Scuola Superiore ISUFI, University of Salento, Street Arnesano, 73100 Lecce, Italy
3Hematology and Clinical Proteomics Unit, “Vito Fazzi” Hospital, University of Salento, Square Muratore, 73100 Lecce, Italy
4Dipartimento Ingegneria dell'Innovazione, University of Salento, Street Monteroni, 73100 Lecce, Italy
5Center of Biomolecular Nanotechnologies (CNB) of Italian Institute of Technology (IIT), Street Barsanti, 73010 Arnesano (Le), Italy

Received 8 April 2011; Revised 28 June 2011; Accepted 30 June 2011

Academic Editor: Philippe Maincent

Copyright © 2011 Ilaria E. Palamà et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This pilot study provides the proof of principle for biomedical application of novel polyelectrolyte complexes (PECs) obtained via electrostatic interactions between dextran sulphate (DXS) and poly(allylamine hydrochloride) (PAH). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that DXS/PAH polyelectrolyte complexes were Monodispersed with regular rounded-shape features and average diameters of 250 nm at 2 : 1 weight ratios of DXS/PAH. Fluorescently labelled DXS and fluorescein-isothiocyanate- (FITC-)conjugate DXS were used to follow cell uptake efficiency of PECs and biodegradability of their enzymatically degradable DXS-layers by using confocal laser scanning microscopy (CLSM). Moreover, quantitative MTT and Trypan Blue assays were employed to validate PECs as feasible and safe nanoscaled carriers at single-cell level without adverse effects on metabolism and viability.