Table of Contents Author Guidelines Submit a Manuscript
Journal of Drug Delivery
Volume 2011, Article ID 370308, 15 pages
http://dx.doi.org/10.1155/2011/370308
Research Article

Modeling Drug-Carrier Interaction in the Drug Release from Nanocarriers

1Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA
2Department of Agricultural and Biosystems Engineering, University of Arizona, Tucson, AZ 85721, USA
3Biomedical Engineering IDP and Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA

Received 21 April 2011; Revised 15 June 2011; Accepted 15 June 2011

Academic Editor: Abdelwahab Omri

Copyright © 2011 Like Zeng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. P. Torchilin, “Multifunctional nanocarriers,” Advanced Drug Delivery Reviews, vol. 58, no. 14, pp. 1532–1555, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. T. J. Sill and H. A. von Recum, “Electrospinning: applications in drug delivery and tissue engineering,” Biomaterials, vol. 29, no. 13, pp. 1989–2006, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Kreuter, “Nanoparticle-based drug delivery systems,” Journal of Controlled Release, vol. 16, no. 1-2, pp. 169–176, 1991. View at Google Scholar · View at Scopus
  4. Y. Barenholz, “Liposome application: problems and prospects,” Current Opinion in Colloid and Interface Science, vol. 6, no. 1, pp. 66–77, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Lian and R. J. Y. Ho, “Trends and developments in liposome drug delivery systems,” Journal of Pharmaceutical Sciences, vol. 90, no. 6, pp. 667–680, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Verreck, I. Chun, J. Rosenblatt et al., “Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer,” Journal of Controlled Release, vol. 92, no. 3, pp. 349–360, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. I. C. Liao, A. C. A. Wan, E. K. F. Yim, and K. W. Leong, “Controlled release from fibers of polyelectrolyte complexes,” Journal of Controlled Release, vol. 104, no. 2, pp. 347–358, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Ye, S. Kim, and K. Park, “Issues in long-term protein delivery using biodegradable microparticles,” Journal of Controlled Release, vol. 146, no. 2, pp. 241–260, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Ishihara, N. Izumo, M. Higaki et al., “Role of zinc in formulation of PLGA/PLA nanoparticles encapsulating betamethasone phosphate and its release profile,” Journal of Controlled Release, vol. 105, no. 1-2, pp. 68–76, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Li, H. L. Wong, A. J. Shuhendler, A. M. Rauth, and X. Y. Wu, “Molecular interactions, internal structure and drug release kinetics of rationally developed polymer-lipid hybrid nanoparticles,” Journal of Controlled Release, vol. 128, no. 1, pp. 60–70, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Satoh, Y. Higuchi, S. Kawakami et al., “Encapsulation of the synthetic retinoids Am80 and LE540 into polymeric micelles and the retinoids' release control,” Journal of Controlled Release, vol. 136, no. 3, pp. 187–195, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Mittal, D. K. Sahana, V. Bhardwaj, and M. N. V. Ravi Kumar, “Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo,” Journal of Controlled Release, vol. 119, no. 1, pp. 77–85, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. C. Leroux, E. Allémann, F. De Jaeghere, E. Doelker, and R. Gurny, “Biodegradable nanoparticles—from sustained release formulations to improved site specific drug delivery,” Journal of Controlled Release, vol. 39, no. 2-3, pp. 339–350, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Zeng, L. Yang, Q. Liang et al., “Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation,” Journal of Controlled Release, vol. 105, no. 1-2, pp. 43–51, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Briganti, D. Spiller, C. Mirtelli et al., “A composite fibrin-based scaffold for controlled delivery of bioactive pro-angiogenetic growth factors,” Journal of Controlled Release, vol. 142, no. 1, pp. 14–21, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Hong, X. Chen, X. Jing, H. Fan, Z. Gu, and X. Zhang, “Fabrication and drug delivery of ultrathin mesoporous bioactive glass hollow fibers,” Advanced Functional Materials, vol. 20, no. 9, pp. 1503–1510, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. B. S. Zolnik and D. J. Burgess, “Evaluation of in vivo-in vitro release of dexamethasone from PLGA microspheres,” Journal of Controlled Release, vol. 127, no. 2, pp. 137–145, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Siepmann and F. Siepmann, “Mathematical modeling of drug delivery,” International Journal of Pharmaceutics, vol. 364, no. 2, pp. 328–343, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Enden and A. Schroeder, “A mathematical model of drug release from liposomes by low frequency ultrasound,” Annals of Biomedical Engineering, vol. 37, no. 12, pp. 2640–2645, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Zeng and X. Wu, “Modeling the sustained release of lipophilic drugs from liposomes,” Applied Physics Letters, vol. 97, no. 7, Article ID 073701, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Crank, The Mathematics of Diffusion, Clarendon Press, Oxford, UK, 1975.
  22. A. Borghi, E. Foa, R. Balossino, F. Migliavacca, and G. Dubini, “Modelling drug elution from stents: effects of reversible binding in the vascular wall and degradable polymeric matrix,” Computer Methods in Biomechanics and Biomedical Engineering, vol. 11, no. 4, pp. 367–377, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. D. V. Sakharov, L. V. Kalachev, and D. C. Rijken, “Numerical simulation of local pharmacokinetics of a drug after intravascular delivery with an eluting stent,” Journal of Drug Targeting, vol. 10, no. 6, pp. 507–513, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Li, T. L. M. ten Hagen, D. Schipper et al., “Triggered content release from optimized stealth thermosensitive liposomes using mild hyperthermia,” Journal of Controlled Release, vol. 143, no. 2, pp. 274–279, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. J. A. Shabbits, G. N. C. Chiu, and L. D. Mayer, “Development of an in vitro drug release assay that accurately predicts in vivo drug retention for liposome-based delivery systems,” Journal of Controlled Release, vol. 84, no. 3, pp. 161–170, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Lamprecht, Y. Bouligand, and J. P. Benoit, “New lipid nanocapsules exhibit sustained release properties for amiodarone,” Journal of Controlled Release, vol. 84, no. 1-2, pp. 59–68, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Calvo, J. L. Vila-Jato, and M. J. Alonso, “Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers,” International Journal of Pharmaceutics, vol. 153, no. 1, pp. 41–50, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Efron and R. Tibshirani, An Introduction to the Bootstrap, Chapman & Hall/CRC, Boca Raton, Fla, USA, 1993.
  29. Z. Lu, J. Bei, and S. Wang, “A method for the preparation of polymeric nanocapsules without stabilizer,” Journal of Controlled Release, vol. 61, no. 1-2, pp. 107–112, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Zhang, Z. Zhi, T. Jiang, J. Zhang, Z. Wang, and S. Wang, “Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan,” Journal of Controlled Release, vol. 145, no. 3, pp. 257–263, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. X. J. Loh, P. Peh, S. Liao, C. Sng, and J. Li, “Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers,” Journal of Controlled Release, vol. 143, no. 2, pp. 175–182, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. L. D. Mayer, L. C. L. Tai, D. S. C. Ko et al., “Influence of vesicle size, lipid composition, and drug-to-lipid ratio on the biological activity of liposomal doxorubicin in mice,” Cancer Research, vol. 49, no. 21, pp. 5922–5930, 1989. View at Google Scholar · View at Scopus
  33. H. Takeuchi, H. Kojima, H. Yamamoto, and Y. Kawashima, “Evaluation of circulation profiles of liposomes coated with hydrophilic polymers having different molecular weights in rats,” Journal of Controlled Release, vol. 75, no. 1-2, pp. 83–91, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. T. M. Allen, T. Mehra, C. Hansen, and Y. C. Chin, “Stealth liposomes: an improved sustained release system for 1-β-D- arabinofuranosylcytosine,” Cancer Research, vol. 52, no. 9, pp. 2431–2439, 1992. View at Google Scholar · View at Scopus
  35. E. Roux, C. Passirani, S. Scheffold, J. P. Benoit, and J. C. Leroux, “Serum-stable and long-circulating, PEGylated, pH-sensitive liposomes,” Journal of Controlled Release, vol. 94, no. 2-3, pp. 447–451, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Yuan, M. Dellian, D. Fukumura et al., “Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size,” Cancer Research, vol. 55, no. 17, pp. 3752–3756, 1995. View at Google Scholar · View at Scopus
  37. H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti, “A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering,” Biomaterials, vol. 24, no. 12, pp. 2077–2082, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. Q. P. Pham, U. Sharma, and A. G. Mikos, “Electrospinning of polymeric nanofibers for tissue engineering applications: a review,” Tissue Engineering, vol. 12, no. 5, pp. 1197–1211, 2006. View at Publisher · View at Google Scholar · View at Scopus