Table of Contents Author Guidelines Submit a Manuscript
Journal of Drug Delivery
Volume 2011, Article ID 469679, 12 pages
http://dx.doi.org/10.1155/2011/469679
Review Article

Liposomes for Targeted Delivery of Active Agents against Neurodegenerative Diseases (Alzheimer's Disease and Parkinson's Disease)

Department of Pathology and Neuropathology, University Hospital of Vigo (CHUVI), Hospital of Meixoeiro, Meixoeiro s/n, 36215 Vigo, Spain

Received 13 July 2011; Revised 18 September 2011; Accepted 19 September 2011

Academic Editor: Sophia Antimisiaris

Copyright © 2011 Carlos Spuch and Carmen Navarro. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. OECD, “Dementia prevalence,” in OECD, Health at a Glance: Europe 2010, pp. 54–55, OECD Publishing, 2010. View at Google Scholar
  2. O. V. Forlenza, B. S. Diniz, and W. F. Gattaz, “Diagnosis and biomarkers of predementia in Alzheimer's disease,” BMC Medicine, vol. 8, p. 89, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Bertram and R. E. Tanzi, “The genetic epidemiology of neurodegenerative disease,” Journal of Clinical Investigation, vol. 115, no. 6, pp. 1449–1457, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. C. P. Ferri, M. Prince, C. Brayne et al., “Global prevalence of dementia: a Delphi consensus study,” Lancet, vol. 366, no. 9503, pp. 2112–2117, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. American Health Assistance Foundation, “Alzheimer disease research: about Alzheimer,” http://www.ahaf.org/alzheimers/.
  6. D. Morgan, “Immunotherapy for Alzheimer's disease,” Journal of Internal Medicine, vol. 269, no. 1, pp. 54–63, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Citron, “Alzheimer's disease: strategies for disease modification,” Nature Reviews Drug Discovery, vol. 9, no. 5, pp. 387–398, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. D. M. A. Mann, T. Iwatsubo, Y. Ihara et al., “Predominant deposition of amyloid-β42(43) in plaques in cases of Alzheimer's disease and hereditary cerebral hemorrhage associated with mutations in the amyloid precursor protein gene,” American Journal of Pathology, vol. 148, no. 4, pp. 1257–1266, 1996. View at Google Scholar · View at Scopus
  9. M. Jin, N. Shepardson, T. Yang, G. Chen, D. Walsh, and D. J. Selkoe, “Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 14, pp. 5819–5824, 2011. View at Publisher · View at Google Scholar
  10. E. Siemers, R. B. DeMattos, P. C. May, and R. A. Dean, “Role of biochemical Alzheimers disease biomarkers as end points in clinical trials,” Biomarkers in Medicine, vol. 4, no. 1, pp. 81–89, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Spuch, D. Antequera, A. Portero et al., “The effect of encapsulated VEGF-secreting cells on brain amyloid load and behavioral impairment in a mouse model of Alzheimer's disease,” Biomaterials, vol. 31, no. 21, pp. 5608–5618, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Matsuoka, M. Saito, J. LaFrancois et al., “Novel therapeutic approach for the treatment of Alzheimer's disease by peripheral administration of agents with an affinity to β-amyloid,” Journal of Neuroscience, vol. 23, no. 1, pp. 29–33, 2003. View at Google Scholar · View at Scopus
  13. A. Sagare, R. Deane, R. D. Bell et al., “Clearance of amyloid-β by circulating lipoprotein receptors,” Nature Medicine, vol. 13, no. 9, pp. 1029–1031, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Carro, C. Spuch, J. L. Trejo, D. Antequera, and I. Torres-Aleman, “Choroid plexus megalin is involved in neuroprotection by serum insulin-like growth factor I,” Journal of Neuroscience, vol. 25, no. 47, pp. 10884–10893, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. Parkinson Disease Foundation, http://www.pdf.org/.
  16. A. Björklund and S. B. Dunnett, “Dopamine neuron systems in the brain: an update,” Trends in Neurosciences, vol. 30, no. 5, pp. 194–202, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. T. M. Dawson and V. L. Dawson, “Molecular Pathways of Neurodegeneration in Parkinson's Disease,” Science, vol. 302, no. 5646, pp. 819–822, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. M. D. Pasic, E. P. Diamandis, J. McLaurin, D. M. Holtzman, G. Schmitt-Ulms, and R. Quirion, “Alzheimer disease: advances in pathogenesis, diagnosis, and therapy,” Clinical Chemistry, vol. 57, no. 5, pp. 664–669, 2011. View at Publisher · View at Google Scholar
  19. A. Di Stefano, P. Sozio, A. Iannitelli, and L. S. Cerasa, “New drug delivery strategies for improved Parkinson's disease therapy,” Expert Opinion on Drug Delivery, vol. 6, no. 4, pp. 389–404, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Gregoriadis, “Liposome research in drug delivery: the early days,” Journal of Drug Targeting, vol. 16, no. 7-8, pp. 520–524, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. T. A. Elbayoumi and V. P. Torchilin, “Current trends in liposome research,” Methods in Molecular Biology, vol. 605, pp. 1–27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Szoka and D. Papahadjopoulos, “Comparative properties and methods of preparation of lipid vesicles (liposomes),” Annual Review of Biophysics and Bioengineering, vol. 9, pp. 467–508, 1980. View at Google Scholar · View at Scopus
  23. E. Neuwelt, N. J. Abbott, L. Abrey et al., “Strategies to advance translational research into brain barriers,” The Lancet Neurology, vol. 7, no. 1, pp. 84–96, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. N. J. Abbott, L. Rönnbäck, and E. Hansson, “Astrocyte-endothelial interactions at the blood-brain barrier,” Nature Reviews Neuroscience, vol. 7, no. 1, pp. 41–53, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Spuch and C. Navarro, “Transport mechanisms at the blood-cerebrospinal-fluid barrier: role of megalin (LRP2),” Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, vol. 4, no. 3, pp. 190–205, 2010. View at Google Scholar · View at Scopus
  26. C. Chen, D. Han, C. Cai, and X. Tang, “An overview of liposome lyophilization and its future potential,” Journal of Controlled Release, vol. 142, no. 3, pp. 299–311, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Spuch and C. Navarro, “The therapeutic potential of microencapsulate implants: patents and clinical trials,” Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, vol. 4, no. 1, pp. 59–68, 2010. View at Publisher · View at Google Scholar
  28. J. Y. Fang, T. L. Hwang, and Y. L. Huang, “Liposomes as vehicles for enhancing drug delivery via skin routes,” Current Nanoscience, vol. 2, no. 1, pp. 55–70, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Johnsson and K. Edwards, “Liposomes, disks, and spherical micelles: aggregate structure in mixtures of gel phase phosphatidylcholines and poly(ethylene glycol)-phospholipids,” Biophysical Journal, vol. 85, no. 6, pp. 3839–3847, 2003. View at Google Scholar · View at Scopus
  30. A. Rawat, B. Vaidya, K. Khatri et al., “Targeted intracellular delivery of therapeutics: an overview,” Pharmazie, vol. 62, no. 9, pp. 643–658, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. V. P. Torchilin, “Recent advances with liposomes as pharmaceutical carriers,” Nature Reviews Drug Discovery, vol. 4, no. 2, pp. 145–160, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Damen, J. Regts, and G. Scherphof, “Transfer and exchange of phospholipid between small unilamellar liposomes and rat plasma high density lipoproteins. Dependence on cholesterol content and phospholipid composition,” Biochimica et Biophysica Acta, vol. 665, no. 3, pp. 538–545, 1981. View at Google Scholar · View at Scopus
  33. M. A. Tran, R. J. Watts, and G. P. Robertson, “Use of liposomes as drug delivery vehicles for treatment of melanoma,” Pigment Cell and Melanoma Research, vol. 22, no. 4, pp. 388–399, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Kozubek, J. Gubernator, E. Przeworska, and M. Stasiuk, “Liposomal drug delivery, a novel approach: PLARosomes,” Acta Biochimica Polonica, vol. 47, no. 3, pp. 639–649, 2000. View at Google Scholar · View at Scopus
  35. A. Gabizon, R. Catane, B. Uziely et al., “Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes,” Cancer Research, vol. 54, no. 4, pp. 987–992, 1994. View at Google Scholar · View at Scopus
  36. D. C. Drummond and D. Kirpotin, “Liposomes useful for drug delivery to the brain,” US2007/0110798, 2007.
  37. S. D. Li and L. Huang, “Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting,” Journal of Controlled Release, vol. 145, no. 3, pp. 178–181, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Harashima, K. Sakata, K. Funato, and H. Kiwada, “Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes,” Pharmaceutical Research, vol. 11, no. 3, pp. 402–406, 1994. View at Publisher · View at Google Scholar · View at Scopus
  39. O. P. Medina, Y. Zhu, and K. Kairamo, “Targeted liposomal drug delivery in cancer,” Current Pharmaceutical Design, vol. 10, no. 24, pp. 2981–2989, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. G. M. Dubowchik and M. A. Walker, “Receptor-mediated and enzyme-dependent targeting of cytotoxic anticancer drugs,” Pharmacology and Therapeutics, vol. 83, no. 2, pp. 67–123, 1999. View at Publisher · View at Google Scholar · View at Scopus
  41. D. B. Kirpotin, J. W. Park, K. Hong et al., “Targeting of liposomes to solid tumors: the case of sterically stabilized anti-HER2 immunoliposomes,” Journal of Liposome Research, vol. 7, no. 4, pp. 391–417, 1997. View at Google Scholar · View at Scopus
  42. P. Debbage, “Targeted drugs and nanomedicine: present and future,” Current Pharmaceutical Design, vol. 15, no. 2, pp. 153–172, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Gao, J. Sun, H. Li et al., “Lyophilized HER2-specific PEGylated immunoliposomes for active siRNA gene silencing,” Biomaterials, vol. 31, no. 9, pp. 2655–2664, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Maruyama, “PEG-immunoliposome,” Bioscience Reports, vol. 22, no. 2, pp. 251–266, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. P. Pradhan, J. Giri, F. Rieken et al., “Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy,” Journal of Controlled Release, vol. 142, no. 1, pp. 108–121, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Kaneda, “Virosome: a novel vector to enable multi-modal strategies for cancer therapy,” Advanced Drug Delivery Reviews. In press. View at Publisher · View at Google Scholar
  47. R. Zurbriggen, M. Amacker, A. R. Kammer et al., “Virosome-based active immunization targets soluble amyloid species rather than plaques in a transgenic mouse model of Alzheimer's disease,” Journal of Molecular Neuroscience, vol. 27, no. 2, pp. 157–166, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. B. K. Kim, K. O. Doh, J. H. Nam et al., “Synthesis of novel cholesterol-based cationic lipids for gene delivery,” Bioorganic and Medicinal Chemistry Letters, vol. 19, no. 11, pp. 2986–2989, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Sharma and U. S. Sharma, “Liposomes in drug delivery: progress and limitations,” International Journal of Pharmaceutics, vol. 154, no. 2, pp. 123–140, 1997. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Sinha, N. Das, and M. K. Basu, “Liposomal antioxidants in combating ischemia-reperfusion injury in rat brain,” Biomedicine and Pharmacotherapy, vol. 55, no. 5, pp. 264–271, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. W. Pardridge and J. Huwyler, “Transport of liposomes across the blood-brain barrier,” WO98/22092, 1997.
  52. N. Oku, M. Yamashita, Y. Katayama et al., “PET imaging of brain cancer with positron emitter-labeled liposomes,” International Journal of Pharmaceutics, vol. 403, no. 1-2, pp. 170–177, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Goedert, “Alpha-synuclein and neurodegenerative diseases,” Nature Reviews Neuroscience, vol. 2, no. 7, pp. 492–501, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. M. J. During, A. Freese, A. Y. Deutch et al., “Biochemical and behavioral recovery in a rodent model of Parkinson's disease following stereotactic implantation of dopamine-containing liposomes,” Experimental Neurology, vol. 115, no. 2, pp. 193–199, 1992. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Hashimoto, K. Kawahara, P. Bar-On, E. Rockenstein, L. Crews, and E. Masliah, “The role of α-synuclein assembly and metabolism in the pathogenesis of Lewy body disease,” Journal of Molecular Neuroscience, vol. 24, no. 3, pp. 343–352, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. J. B. Schulz, J. Lindenau, J. Seyfried, and J. Dichgans, “Glutathione, oxidative stress and neurodegeneration,” European Journal of Biochemistry, vol. 267, no. 16, pp. 4904–4911, 2000. View at Publisher · View at Google Scholar
  57. Y. E. Choonara, V. Pillay, L. C. Du Toit et al., “Trends in the molecular pathogenesis and clinical therapeutics of common neurodegenerative disorders,” International Journal of Molecular Sciences, vol. 10, no. 6, pp. 2510–2557, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. G. Modi, V. Pillay, and Y. E. Choonara, “Advances in the treatment of neurodegenerative disorders employing nanotechnology,” Annals of the New York Academy of Sciences, vol. 1184, pp. 154–172, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Md, S. Haque, J. K. Sahni, S. Baboota, and J. Ali, “New non-oral drug delivery systems for Parkinson's disease treatment,” Expert Opinion on Drug Delivery, vol. 8, no. 3, pp. 359–374, 2011. View at Publisher · View at Google Scholar
  60. G. Gregoriadis, J. Senior, B. Wolff, and C. Kirby, “Fate of liposomes in vivo: control leading to targeting,” Life Sciences, vol. 82, pp. 243–266, 1984. View at Google Scholar
  61. M. J. Micklus, N. H. Greig, and S. I. Rapoport, “Targeting of liposomes to the blood brain barrier,” US2002/0025313, 2002.
  62. W. Pardridge, “Chimeric peptides for neuropeptide delivery through the blood brain barrier,” US4801575, 1989.
  63. D. C. Drummond, “Liposomes useful for drug delivery,” CN1980637, 2007.
  64. A. Di Stefano, P. Sozio, A. Iannitelli, C. Marianecci, E. Santucci, and M. Carafa, “Maleic- and fumaric-diamides of (O,O-diacetyl)-L-Dopa-methylester as anti-Parkinson prodrugs in liposomal formulation,” Journal of Drug Targeting, vol. 14, no. 9, pp. 652–661, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. G. D. Zeevalk, L. P. Bernard, and F. T. Guilford, “Liposomal-glutathione provides maintenance of intracellular glutathione and neuroprotection in mesencephalic neuronal cells,” Neurochemical Research, vol. 35, no. 10, pp. 1575–1587, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Di Stefano, P. Sozio, L. S. Cerasa, and A. Iannitelli, “L-Dopa prodrugs: an overview of trends for improving parkinson's disease treatment,” Current Pharmaceutical Design, vol. 17, no. 32, pp. 3482–3493, 2011. View at Publisher · View at Google Scholar
  67. T. F. Chen and C. M. Chiang, “Transdermal administration of ropinorole and analogs thereof,” US5807570, 1998.
  68. S. Yum, M. K. Nelson, and P. S. Campbell, “Formulations for transdermal delivery of perigolide,” WO1996040139, 1996.
  69. S.-H. Hsu, S. A. Al-Suwayeh, C.-C. Chen, C.-H. Chi, and J.-Y. Fang, “PEGylated liposomes incorporated with nonionic surfactants as an apomorphine delivery system targeting the brain: in vitro release and in vivo real-time imaging,” Current Nanoscience, vol. 7, no. 2, pp. 191–199, 2011. View at Publisher · View at Google Scholar
  70. K. Alloul, L. Sauriol, W. Kennedy et al., “Alzheimer's disease: a review of the disease, its epidemiology and economic impact,” Archives of Gerontology and Geriatrics, vol. 27, no. 3, pp. 189–221, 1998. View at Publisher · View at Google Scholar · View at Scopus
  71. V. W. Delagarza, “Pharmacologic treatment of Alzheimer's disease: an update,” American Family Physician, vol. 68, no. 7, pp. 1365–1372, 2003. View at Google Scholar · View at Scopus
  72. K. Arumugam, G. S. Subramanian, S. R. Mallayasamy, R. K. Averineni, M. S. Reddy, and N. Udupa, “A study of rivastigmine liposomes for delivery into the brain through intranasal route,” Acta Pharmaceutica, vol. 58, no. 3, pp. 287–297, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. N. B. Mutlu, Z. Deǧim, S. Yilmaz, D. Eiz, and A. Nacar, “New perspective for the treatment of Alzheimer diseases: liposomal rivastigmine formulations,” Drug Development and Industrial Pharmacy, vol. 37, no. 7, pp. 775–789, 2011. View at Publisher · View at Google Scholar
  74. J. Wattanathorn, W. Phachonpai, S. Pripem, and S. Suthiparinyanont, “Intranasal administration of quercetin liposme decreases anxiety-like behaviour and increases spatial memory,” American Journal of Agricultural and Biological Science, vol. 2, pp. 31–35, 2007. View at Google Scholar
  75. V. C. J. de Boer, A. A. Dihal, H. van der Woude et al., “Tissue distribution of quercetin in rats and pigs,” Journal of Nutrition, vol. 135, no. 7, pp. 1718–1725, 2005. View at Google Scholar · View at Scopus
  76. W. Phachonpai, J. Wattanathorn, S. Muchimapura, T. Tong-Un, and D. Preechagoon, “Neuroprotective effect of quercetin encapsulated liposomes: a novel therapeutic strategy against Alzheimer's disease,” American Journal of Applied Sciences, vol. 7, no. 4, pp. 480–485, 2010. View at Google Scholar · View at Scopus
  77. T. Tong-Un, S. Muchimapura, W. Phaconpai, and J. Wattanathorn, “Nasal administration of quercetin liposomes modulate cognitive impairment and inhibit acethylcholinesterase activity in hippocampus,” American Journal of Neuroscience, vol. 1, pp. 21–27, 2010. View at Google Scholar
  78. D. A. Balazs and W. Godbey, “Liposomes for use in gene delivery,” Journal of Drug Delivery, vol. 2011, Article ID 326497, 12 pages, 2011. View at Publisher · View at Google Scholar
  79. S. Mourtas, M. Canovi, C. Zona et al., “Curcumin-decorated nanoliposomes with very high affinity for amyloid-β1-42 peptide,” Biomaterials, vol. 32, no. 6, pp. 1635–1645, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Gobbi, F. Re, M. Canovi et al., “Lipid-based nanoparticles with high binding affinity for amyloid-β1-42 peptide,” Biomaterials, vol. 31, no. 25, pp. 6519–6529, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Canovi, E. Markoutsa, A. N. Lazar et al., “The binding affinity of anti-Aβ1-42 MAb-decorated nanoliposomes to Aβ1-42 peptides in vitro and to amyloid deposits in post-mortem tissue,” Biomaterials, vol. 32, no. 23, pp. 5489–5497, 2011. View at Publisher · View at Google Scholar
  82. K. Zako, M. Sakaguchi, Y. Komizu et al., “Experimental therapeutic effects of hybrid liposomes on the alzheimer's disease in vitro,” Yakugaku Zasshi, vol. 131, no. 5, pp. 775–782, 2011. View at Publisher · View at Google Scholar
  83. G. P. Eckert, S. Chang, J. Eckmann et al., “Liposome-incorporated DHA increases neuronal survival by enhancing non-amyloidogenic APP processing,” Biochimica et Biophysica Acta, vol. 1808, no. 1, pp. 236–243, 2011. View at Publisher · View at Google Scholar
  84. A. Muhs, D. T. Hickman, M. Pihlgren et al., “Liposomal vaccines with conformation-specific amyloid peptide antigens define immune response and efficacy in APP transgenic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 23, pp. 9810–9815, 2007. View at Publisher · View at Google Scholar · View at Scopus