Table of Contents Author Guidelines Submit a Manuscript
Journal of Drug Delivery
Volume 2012, Article ID 604204, 16 pages
http://dx.doi.org/10.1155/2012/604204
Review Article

Successfully Improving Ocular Drug Delivery Using the Cationic Nanoemulsion, Novasorb

1Research and Development Department, Novagali Pharma SA, 1 rue Pierre Fontaine, 91058 Evry Cedex, France
2The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, POB 12065, 91120 Jerusalem, Israel

Received 7 September 2011; Accepted 9 November 2011

Academic Editor: Abhijit A. Date

Copyright © 2012 Frederic Lallemand et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. W. Shell, “Ophthalmic drug delivery systems,” Survey of Ophthalmology, vol. 29, no. 2, pp. 117–128, 1984. View at Google Scholar · View at Scopus
  2. C. Bucolo, A. Maltese, and F. Drago, “When nanotechnology meets the ocular surface,” Expert Review of Ophthalmology, vol. 3, no. 3, pp. 325–332, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Vandervoort and A. Ludwig, “Preparation and evaluation of drug-loaded gelatin nanoparticles for topical ophthalmic use,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 57, no. 2, pp. 251–261, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. T. W. Prow, “Toxicity of nanomaterials to the eye,” Nanomedicine and Nanobiotechnology, vol. 2, no. 4, pp. 317–333, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. L. C. Du Toit, V. Pillay, Y. E. Choonara, T. Govender, and T. Carmichael, “Ocular drug delivery - A look towards nanobioadhesives,” Expert Opinion on Drug Delivery, vol. 8, no. 1, pp. 71–94, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. I. P. Kaur and M. Kanwar, “Ocular preparations: the formulation approach,” Drug Development and Industrial Pharmacy, vol. 28, no. 5, pp. 473–493, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. M. de la Fuente, M. Raviña, P. Paolicelli, A. Sanchez, B. Seijo, and M. J. Alonso, “Chitosan-based nanostructures: a delivery platform for ocular therapeutics,” Advanced Drug Delivery Reviews, vol. 62, no. 1, pp. 100–117, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Lavik, M. H. Kuehn, and Y. H. Kwon, “Novel drug delivery systems for glaucoma,” Eye, vol. 25, no. 5, pp. 578–586, 2011. View at Publisher · View at Google Scholar
  9. R. Srivastava and K. Pathak, “An updated patent review on ocular drug delivery systems with potential for commercial viability,” Recent Patents on Drug Delivery and Formulation, vol. 5, no. 2, pp. 146–162, 2011. View at Publisher · View at Google Scholar
  10. K. Kesavan, J. Balasubramaniam, S. Kant, P. N. Singh, and J. K. Pandit, “Newer approaches for optimal bioavailability of ocularly delivered drugs: review,” Current Drug Delivery, vol. 8, no. 2, pp. 172–193, 2011. View at Publisher · View at Google Scholar
  11. C. Gupta and A. Chauhan, “Ophthalmic delivery of cyclosporine A by punctal plugs,” Journal of Controlled Release, vol. 150, no. 1, pp. 70–76, 2011. View at Publisher · View at Google Scholar
  12. G. W. Lu, “Recent advances in developing ophthalmic formulations: a patent review,” Recent Patents on Drug Delivery and Formulation, vol. 4, no. 1, pp. 49–57, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. B. R. Conway, “Recent patents on ocular drug delivery systems,” Recent Patents on Drug Delivery and Formulation, vol. 2, no. 1, pp. 1–8, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Muchtar, S. Almog, M. T. Torracca, M. F. Saettone, and S. Benita, “A submicron emulsion as ocular vehicle for delta-8-tetrahydrocannabinol: effect on intraocular pressure in rabbits,” Ophthalmic Research, vol. 24, no. 3, pp. 142–149, 1992. View at Google Scholar · View at Scopus
  15. N. Naveh, C. Weissman, S. Muchtar, S. Benita, and R. Mechoulam, “A submicron emulsion of HU-211, a synthetic cannabinoid, reduces intraocular pressure in rabbits,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 238, no. 4, pp. 334–338, 2000. View at Google Scholar · View at Scopus
  16. Y. Rojanasakul and J. R. Robinson, “Transport mechanisms of the cornea: characterization of barrier permselectivity,” International Journal of Pharmaceutics, vol. 55, no. 2-3, pp. 237–246, 1989. View at Google Scholar · View at Scopus
  17. T. Gershanik and S. Benita, “Positively charged self-emulsifying oil formulation for improving oral bioavailability of progesterone,” Pharmaceutical Development and Technology, vol. 1, no. 2, pp. 147–157, 1996. View at Google Scholar · View at Scopus
  18. S. Klang, M. Abdulrazik, and S. Benita, “Influence of emulsion droplet surface charge on indomethacin ocular tissue distribution,” Pharmaceutical Development and Technology, vol. 5, no. 4, pp. 521–532, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Abdulrazik, S. Tamilvanan, K. Khoury, and S. Benita, “Ocular delivery of cyclosporin A II. Effect of submicron emulsion's surface charge on ocular distribution of topical cyclosporin A,” S.T.P. Pharma Sciences, vol. 11, no. 6, pp. 427–432, 2001. View at Google Scholar · View at Scopus
  20. S. Tamilvanan and S. Benita, “The potential of lipid emulsion for ocular delivery of lipophilic drugs,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 58, no. 2, pp. 357–368, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Rabinovich-Guilatt, P. Couvreur, G. Lambert, and C. Dubernet, “Cationic vectors in ocular drug delivery,” Journal of Drug Targeting, vol. 12, no. 9-10, pp. 623–633, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Benita and G. Lambert, “Ocular drug delivery by cationic emulsions,” in Proceedings of the International Symposium on Ocular Pharmacology and Therapeutics, Monaco, France, 2004.
  23. S. Benita and E. Elbaz, “Oil-in-water emulsions of positively charged particles,” US patent 6,007,826, Yisum Research Development Company of the Hebrew University of Jerusalem, Jerusalem, Israel, 1999.
  24. L. Rabinovich, G. Lambert, F. Lallemand, and B. Philips, “Emulsion compositions containing quaternary ammonium compounds,” US patent 7973081, Novagali Pharma, Evry, France, 2007.
  25. S. Bague, B. Philips, J. S. Garrigue, L. Rabinovich, and G. Lambert, “Oil-in-water type emulsion with low concentration of cationic agent and positive zeta potential,” EP1655021, Novagali Pharma, Evry, France, 2008.
  26. S. Benita, “Prevention of topical and ocular oxidative stress by positively charged submicron emulsion,” Biomedicine and Pharmacotherapy, vol. 53, no. 4, pp. 193–206, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Calvo, J. L. Vila-Jato, and M. J. Alonso, “Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers,” International Journal of Pharmaceutics, vol. 153, no. 1, pp. 41–50, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. N. J. Van Abbe, “Eye irritation: studies relating to responses in man and laboratory animals,” Journal of the Society of Cosmetic Chemists of Japan, vol. 24, no. 11, pp. 685–692, 1973. View at Google Scholar · View at Scopus
  29. A. Manosroi, K. Podjanasoonthon, and J. Manosroi, “Development of novel topical tranexamic acid liposome formulations,” International Journal of Pharmaceutics, vol. 235, no. 1-2, pp. 61–70, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Rabinovich-Guilatt, P. Couvreur, G. Lambert, D. Goldstein, S. Benita, and C. Dubernet, “Extensive surface studies help to analyse zeta potential data: the case of cationic emulsions,” Chemistry and Physics of Lipids, vol. 131, no. 1, pp. 1–13, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. O. Boussif, F. LezoualC'H, M. A. Zanta et al., “A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 16, pp. 7297–7301, 1995. View at Publisher · View at Google Scholar · View at Scopus
  32. W.-T. Kuo, H.-Y. Huang, and Y.-Y. Huang, “Polymeric micelles comprising stearic acid-grafted polyethyleneimine as nonviral gene carriers,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 9, pp. 5540–5547, 2010. View at Publisher · View at Google Scholar
  33. J. Wang, S. S. Feng, S. Wang, and Z. Y. Chen, “Evaluation of cationic nanoparticles of biodegradable copolymers as siRNA delivery system for hepatitis B treatment,” International Journal of Pharmaceutics, vol. 400, no. 1-2, pp. 194–200, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Zhang, G. Wang, X. Lin et al., “Polyethylenimine-coated albumin nanoparticles for BMP-2 delivery,” Biotechnology Progress, vol. 24, no. 4, pp. 945–956, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Masotti, F. Moretti, F. Mancini et al., “Physicochemical and biological study of selected hydrophobic polyethylenimine-based polycationic liposomes and their complexes with DNA,” Bioorganic and Medicinal Chemistry, vol. 15, no. 3, pp. 1504–1515, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. S. V. Vinogradov, T. K. Bronich, and A. V. Kabanov, “Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells,” Advanced Drug Delivery Reviews, vol. 54, no. 1, pp. 135–147, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. A. C. Hunter, “Molecular hurdles in polyfectin design and mechanistic background to polycation induced cytotoxicity,” Advanced Drug Delivery Reviews, vol. 58, no. 14, pp. 1523–1531, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. M. K. Yeh, J. L. Chen, C. H. Chiang, and Z. Y. Chang, “The preparation of sustained release erythropoietin microparticle,” Journal of Microencapsulation, vol. 24, no. 1, pp. 82–93, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Moreau, M. Domurado, P. Chapon, M. Vert, and D. Domurado, “Biocompatibility of polycations: in vitro agglutination and lysis of red blood cells and in vivo toxicity,” Journal of Drug Targeting, vol. 10, no. 2, pp. 161–173, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. T. W. Kim, H. Chung, I. C. Kwon, H. C. Sung, and S. Y. Jeong, “Optimization of lipid composition in cationic emulsion as In Vitro and In Vivo transfection agents,” Pharmaceutical Research, vol. 18, no. 1, pp. 54–60, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. D. Doroud, A. Vatanara, F. Zahedifard et al., “Cationic solid lipid nanoparticles loaded by cysteine proteinase genes as a novel anti-leishmaniasis DNA vaccine delivery system: characterization and in vitro evaluations,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 13, no. 3, pp. 320–335, 2010. View at Google Scholar · View at Scopus
  42. T. Hagigit, T. Nassar, F. Behar-Cohen, G. Lambert, and S. Benita, “The influence of cationic lipid type on in-vitro release kinetic profiles of antisense oligonucleotide from cationic nanoemulsions,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 70, no. 1, pp. 248–259, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Hagigit, M. Abdulrazik, F. Orucov et al., “Topical and intravitreous administration of cationic nanoemulsions to deliver antisense oligonucleotides directed towards VEGF KDR receptors to the eye,” Journal of Controlled Release, vol. 145, no. 3, pp. 297–305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Sznitowska, S. Janicki, E. A. Dabrowska, and M. Gajewska, “Physicochemical screening of antimicrobial agents as potential preservatives for submicron emulsions,” European Journal of Pharmaceutical Sciences, vol. 15, no. 5, pp. 489–495, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Bague, B. Philips, L. Rabinovich-Guilatt, G. Lambert, and J. S. Garrigue, “Ophthalmic oil-in-water type emulsion with stable positive zeta potential,” US patent 20070248645, EP1809237, Novagali Pharma, Evry, France, 2007.
  46. B. Philips, S. Bague, L. Rabinovich-Guilatt, and G. Lambert, “Ophthalmic emulsions containing an immunosuppressive agent,” EP 1809238, Novagali Pharma, Evry, France, 2008.
  47. S. Bague, B. Philips, L. Rabinovich, and G. Lambert, “Ophthalmic emulsions containing prostaglandins,” EP1827373, Novagali Pharma, Evry, France, 2007.
  48. M. S. Norn, “Tear fluid pH in normals, contact lens wearers, and pathological cases,” Acta Ophthalmologica, vol. 66, no. 5, pp. 485–489, 1988. View at Google Scholar · View at Scopus
  49. M. Yamada, M. Kawai, H. Mochizuki, Y. Hata, and Y. Mashima, “Fluorophotometric measurement of the buffering action of human tears in vivo,” Current Eye Research, vol. 17, no. 10, pp. 1005–1009, 1998. View at Publisher · View at Google Scholar · View at Scopus
  50. G. Hecht, “Ophthalmic preparations characteristics,” in The Science and Practice of Pharmacy, Remington, Ed., pp. 821–835, Lippincott Williams Wilkins, Philadelphia, Pa, USA, 20th edition, 2000. View at Google Scholar
  51. T. R. R. Kurup, L. S. C. Wan, and L. W. Chan, “Preservative requirements in emulsions,” Pharmaceutica Acta Helvetiae, vol. 67, no. 7, pp. 204–208, 1992. View at Google Scholar · View at Scopus
  52. J. S. Garrigue and G. Lambert, “Self-emulsifying oral lipid-based formulations for improved delivery of lipophilic drugs,” in Microencapsulation: Methods and Industrial Applications, S. Benita, Ed., pp. 429–480, CRC Press, Boca Raton, Fla, USA, 2006. View at Google Scholar
  53. F. Lallemand, O. Felt-Baeyens, K. Besseghir, F. Behar-Cohen, and R. Gurny, “Cyclosporine A delivery to the eye: a pharmaceutical challenge,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 56, no. 3, pp. 307–318, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. S. H. Klang, J. Frucht-Pery, A. Hoffman, and S. Benita, “Physicochemical characterization and acute toxicity evaluation of a positively-charged submicron emulsion vehicle,” Journal of Pharmacy and Pharmacology, vol. 46, no. 12, pp. 986–993, 1994. View at Google Scholar · View at Scopus
  55. H. Liang, F. Brignole-Baudouin, L. Rabinovich-Guilatt et al., “Reduction of quaternary ammonium-induced ocular surface toxicity by emulsions: an in vivo study in rabbits,” in Proceedings of the International Symposium on Ocular Pharmacology and Therapeutics, Budapest, Hungary, 2008.
  56. H. Liang, C. Baudouin, M. O. Faure, G. Lambert, and F. Brignole-Baudouin, “Comparison of the ocular tolerability of a latanoprost cationic emulsion versus conventional formulations of prostaglandins: an in vivo toxicity assay,” Molecular Vision, vol. 15, pp. 1690–1699, 2009. View at Google Scholar · View at Scopus
  57. J. M. Tiffany, “Measurement of wettability of the corneal epithelium. II. Contact angle method,” Acta Ophthalmologica, vol. 68, no. 2, pp. 182–187, 1990. View at Google Scholar · View at Scopus
  58. J. M. Aiache, S. El Meski, E. Beyssac, and G. Serpin, “The formulation of drug for ocular administration,” Journal of Biomaterials Applications, vol. 11, no. 3, pp. 329–348, 1997. View at Google Scholar · View at Scopus
  59. A. A. Acheampong, M. Shackleton, D. D. S. Tang-Liu, S. Ding, M. E. Stern, and R. Decker, “Distribution of cyclosporin A in ocular tissues after topical administration to albino rabbits and beagle dogs,” Current Eye Research, vol. 18, no. 2, pp. 91–103, 1999. View at Google Scholar · View at Scopus
  60. A. Acheampong, M. Shackleton, S. Lam, P. Rudewicz, and D. Tang-Liu, “Cyclosporine distribution into the conjunctiva, cornea, lacrimal gland, and systemic blood following topical dosing of cyclosporine to rabbit, dog, and human eyes,” Advances in Experimental Medicine and Biology, vol. 438, pp. 1001–1004, 1998. View at Google Scholar · View at Scopus
  61. P. Daull, F. Lallemand, B. Philips, G. Lambert, R. Buggage, and J. S. Garrigue, “Distribution of cyclosporine A in ocular tissues after topical administration of cyclosporine A-cationic emulstion to pigmented rabbits,” Investigative Ophthalmology & Visual Science, vol. 186, p. 376, 2011. View at Google Scholar
  62. R. L. Kaswan, “Intraocular penetration of topically applied cyclosporine,” Transplantation Proceedings, vol. 20, no. 2, supplement, pp. 650–655, 1988. View at Google Scholar · View at Scopus
  63. J. B. Serle, S. M. Podos, Y. Kitazawa, and R. F. Wang, “A comparative study of latanoprost (Xalatan) and isopropyl unoprostone (Rescula) in normal and glaucomatous monkey eyes,” Japanese Journal of Ophthalmology, vol. 42, no. 2, pp. 95–100, 1998. View at Publisher · View at Google Scholar · View at Scopus
  64. P. Aragona, R. Spinella, L. Rania et al., “Assessment of the efficacy of cationorm® in patients with moderate dry eye compared with Optive® and Emustil® eye drops,” Acta Ophthalmologica, vol. 89, no. 246, 2011. View at Google Scholar
  65. M. Lemp, C. Baudouin, M. Amrane, D. Ismail, J. S. Garrigue, and R. Buggage, “Poor correlation between dry eye disease (ded) signs and symptoms in a phase III randomized clinical trial,” Investigative Ophthalmology & Visual Science, vol. 52, abstract 3821, 2011. View at Google Scholar
  66. R. Buggage, M. Amrane, D. Ismail, M. Lemp, A. Leonardi, and C. Baudouin, “The effect of Cyclokat® (unpreserved 0.1% cyclosporine cationic emulsion) on corneal involvement in patients with moderate to severe dry eye disease participating in a phase III, multicenter, randomized, controlled, double-masked, clinical trial,” European Journal of Ophthalmology, RF-COR-115, SOE, Geneva, Switzerland, 2011.