Table of Contents Author Guidelines Submit a Manuscript
Journal of Drug Delivery
Volume 2012 (2012), Article ID 751075, 12 pages
http://dx.doi.org/10.1155/2012/751075
Review Article

Noble Metal Nanoparticles Applications in Cancer

1CIGMH, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
2Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain

Received 23 May 2011; Accepted 2 August 2011

Academic Editor: Paulo Cesar de Morais

Copyright © 2012 João Conde et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Balmain, J. Gray, and B. Ponder, “The genetics and genomics of cancer,” Nature Genetics, vol. 33, pp. 238–244, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000. View at Google Scholar · View at Scopus
  4. B. A. J. Ponder, “Cancer genetics,” Nature, vol. 411, no. 6835, pp. 336–341, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. N. P. Praetorius and T. K. Mandal, “Engineered nanoparticles in cancer therapy,” Recent Patents on Drug Delivery & Formulation, vol. 1, no. 1, pp. 37–51, 2007. View at Google Scholar · View at Scopus
  6. M. Ferrari, “Cancer nanotechnology: opportunities and challenges,” Nature Reviews Cancer, vol. 5, no. 3, pp. 161–171, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, and R. Langer, “Nanocarriers as an emerging platform for cancer therapy,” Nature Nanotechnology, vol. 2, no. 12, pp. 751–760, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. P. R. Gil and W. J. Parak, “Composite nanoparticles take aim at cancer,” ACS Nano, vol. 2, no. 11, pp. 2200–2205, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Sanvicens and M. P. Marco, “Multifunctional nanoparticles—properties and prospects for their use in human medicine,” Trends in Biotechnology, vol. 26, no. 8, pp. 425–433, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. P. V. Baptista, “Cancer nanotechnology—prospects for cancer diagnostics and therapy,” Current Cancer Therapy Reviews, vol. 5, no. 2, pp. 80–88, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. J. R. Heath and M. E. Davis, “Nanotechnology and cancer,” Annual Review of Medicine, vol. 59, pp. 251–265, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. T. Selvan, T. T. Y. Tan, D. K. Yi, and N. R. Jana, “Functional and multifunctional nanoparticles for bioimaging and biosensing,” Langmuir, vol. 26, no. 14, pp. 11631–11641, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Baptista, E. Pereira, P. Eaton et al., “Gold nanoparticles for the development of clinical diagnosis methods,” Analytical and Bioanalytical Chemistry, vol. 391, no. 3, pp. 943–950, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy,” Nanomedicine, vol. 2, no. 5, pp. 681–693, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, “The use of gold nanoparticles to enhance radiotherapy in mice,” Physics in Medicine and Biology, vol. 49, no. 18, pp. N309–N315, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. J. F. Hainfeld, F. A. Dilmanian, D. N. Slatkin, and H. M. Smilowitz, “Radiotherapy enhancement with gold nanoparticles,” Journal of Pharmacy and Pharmacology, vol. 60, no. 8, pp. 977–985, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. L. R. Hirsch, R. J. Stafford, J. A. Bankson et al., “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 23, pp. 13549–13554, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. M. S. Yavuz, Y. Cheng, J. Chen et al., “Gold nanocages covered by smart polymers for controlled release with near-infrared light,” Nature Materials, vol. 8, no. 12, pp. 935–939, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Han, P. Ghosh, and V. M. Rotello, “Multi-functional gold nanoparticles for drug delivery,” Advances in Experimental Medicine and Biology, vol. 620, pp. 48–56, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Thomas and A. M. Klibanov, “Conjugation to gold nanoparticles enhances polyethylenimine's transfer of plasmid DNA into mammalian cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 16, pp. 9138–9143, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. M. R. Jones, J. E. Millstone, D. A. Giljohann, D. S. Seferos, K. L. Young, and C. A. Mirkin, “Plasmonically controlled nucleic acid dehybridization with gold nanoprisms,” ChemPhysChem, vol. 10, no. 9-10, pp. 1461–1465, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Bhattacharyya, R. A. Kudgus, R. Bhattacharya, and P. Mukherjee, “Inorganic nanoparticles in cancer therapy,” Pharmaceutical Research, vol. 28, no. 2, pp. 237–259, 2011. View at Publisher · View at Google Scholar
  23. P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, “Gold nanoparticles in delivery applications,” Advanced Drug Delivery Reviews, vol. 60, no. 11, pp. 1307–1315, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Nishiyama, “Nanomedicine: nanocarriers shape up for long life,” Nature Nanotechnology, vol. 2, no. 4, pp. 203–204, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Xie, S. Lee, and X. Chen, “Nanoparticle-based theranostic agents,” Advanced Drug Delivery Reviews, vol. 62, no. 11, pp. 1064–1079, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Advanced Materials, vol. 22, no. 16, pp. 1805–1825, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. R. A. Sperling, P. R. Gil, F. Zhang, M. Zanella, and W. J. Parak, “Biological applications of gold nanoparticles,” Chemical Society Reviews, vol. 37, no. 9, pp. 1896–1908, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Accounts of Chemical Research, vol. 41, no. 12, pp. 1578–1586, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” Journal of Physical Chemistry B, vol. 110, no. 39, pp. 19220–19225, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. R. A. Sperling and W. J. Parak, “Surface modification, functionalization and bioconjugation of colloidal Inorganic nanoparticles,” Philosophical Transactions of the Royal Society A, vol. 368, no. 1915, pp. 1333–1383, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Chen, L. Shao, T. Ming et al., “Understanding the photothermal conversion efficiency of gold nanocrystals,” Small, vol. 6, no. 20, pp. 2272–2280, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. E. S. Day, J. G. Morton, and J. L. West, “Nanoparticles for thermal cancer therapy,” Journal of Biomechanical Engineering, vol. 131, no. 7, Article ID 740011, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Chandra, D. Das, and A. A. Abdelwahab, “Gold nanoparticles in molecular diagnostics and therapeutics,” Digest Journal of Nanomaterials and Biostructures, vol. 5, no. 2, pp. 363–367, 2010. View at Google Scholar · View at Scopus
  34. Y. Liu, H. Miyoshi, and M. Nakamura, “Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles,” International Journal of Cancer, vol. 120, no. 12, pp. 2527–2537, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. A. G. Cuenca, H. Jiang, S. N. Hochwald, M. Delano, W. G. Cance, and S. R. Grobmyer, “Emerging implications of nanotechnology on cancer diagnostics and therapeutics,” Cancer, vol. 107, no. 3, pp. 459–466, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. A. C. Powell, G. F. Paciotti, and S. K. Libutti, “Colloidal gold: a novel nanoparticle for targeted cancer therapeutics,” Methods in Molecular Biology, vol. 624, pp. 375–384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Porcel, S. Liehn, H. Remita et al., “Platinum nanoparticles: a promising material for future cancer therapy?” Nanotechnology, vol. 21, no. 8, p. 85103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Minelli, S. B. Lowe, and M. M. Stevens, “Engineering nanocomposite materials for cancer therapy,” Small, vol. 6, no. 21, pp. 2336–2357, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Stuchinskaya, M. Moreno, M. J. Cook, D. R. Edwards, and D. A. Russell, “Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates,” Photochemical and Photobiological Sciences, vol. 10, no. 5, pp. 822–831, 2011. View at Publisher · View at Google Scholar
  40. V. Raji, J. Kumar, C. S. Rejiya, M. Vibin, V. N. Shenoi, and A. Abraham, “Selective photothermal efficiency of citrate capped gold nanoparticles for destruction of cancer cells,” Experimental Cell Research, vol. 317, no. 14, pp. 2052–2058, 2011. View at Publisher · View at Google Scholar
  41. P. Mukherjee, R. Bhattacharya, N. Bone et al., “Potential therapeutic application of gold nanoparticles in B-chronic lymphocytic leukemia (BCLL): enhancing apoptosis,” Journal of Nanobiotechnology, vol. 5, p. 4, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. D. A. Giljohann, D. S. Seferos, A. E. Prigodich, P. C. Patel, and C. A. Mirkin, “Gene regulation with polyvalent siRNA-nanoparticle conjugates,” Journal of the American Chemical Society, vol. 131, no. 6, pp. 2072–2073, 2009. View at Google Scholar · View at Scopus
  43. K. A. Whitehead, R. Langer, and D. G. Anderson, “Knocking down barriers: advances in siRNA delivery,” Nature Reviews Drug Discovery, vol. 8, no. 2, pp. 129–138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. W. Lu, A. K. Singh, S. A. Khan, D. Senapati, H. Yu, and P. C. Ray, “Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced raman spectroscopy,” Journal of the American Chemical Society, vol. 132, no. 51, pp. 18103–18114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. X. Qian, X. H. Peng, D. O. Ansari et al., “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nature Biotechnology, vol. 26, no. 1, pp. 83–90, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. X. He, J. Gao, S. S. Gambhir, and Z. Cheng, “Near-infrared fluorescent nanoprobes for cancer molecular imaging: status and challenges,” Trends in Molecular Medicine, vol. 16, no. 12, pp. 574–583, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Zhang, Y. Fu, Y. Mei, F. Jiang, and J. R. Lakowicz, “Fluorescent metal nanoshell probe to detect single mirna in lung cancer cell,” Analytical Chemistry, vol. 82, no. 11, pp. 4464–4471, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Fichou and C. Férec, “The potential of oligonucleotides for therapeutic applications,” Trends in Biotechnology, vol. 24, no. 12, pp. 563–570, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. N. Toub, C. Malvy, E. Fattal, and P. Couvreur, “Innovative nanotechnologies forthedelivery ofoligonucleotides andsiRNA,” Biomedicine and Pharmacotherapy, vol. 60, no. 9, pp. 607–620, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello, “Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans,” Nature, vol. 391, no. 6669, pp. 806–811, 1998. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Baker, “RNA interference: from tools to therapies,” Nature, vol. 464, no. 7292, p. 1225, 2010. View at Google Scholar · View at Scopus
  52. O. Milhavet, D. S. Gary, and M. P. Mattson, “RNA interference in biology and medicine,” Pharmacological Reviews, vol. 55, no. 4, pp. 629–648, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. N. R. Wall and Y. Shi, “Small RNA: can RNA interference be exploited for therapy?” The Lancet, vol. 362, no. 9393, pp. 1401–1403, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. G. J. Hannon and J. J. Rossi, “Unlocking the potential of the human genome with RNA interference,” Nature, vol. 431, no. 7006, pp. 371–378, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. N. L. Rosi, D. A. Giljohann, C. S. Thaxton, A. K. R. Lytton-Jean, M. S. Han, and C. A. Mirkin, “Oligonucleotide-modified gold nanoparticles for infracellular gene regulation,” Science, vol. 312, no. 5776, pp. 1027–1030, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. J. S. Lee, J. J. Green, K. T. Love, J. Sunshine, R. Langer, and D. G. Anderson, “Gold, poly(β-amino ester) nanoparticles for small interfering RNA delivery,” Nano Letters, vol. 9, no. 6, pp. 2402–2406, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. G. B. Braun, A. Pallaoro, G. Wu et al., “Laser-activated gene silencing via gold nanoshell-siRNA conjugates,” ACS Nano, vol. 3, no. 7, pp. 2007–2015, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Guo, Y. Huang, Q. Jiang et al., “Enhanced gene delivery and siRNA silencing by gold nanoparticles coated with charge-reversal polyelectrolyte,” ACS Nano, vol. 4, no. 9, pp. 5505–5511, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. S. H. Lee, K. H. Bae, S. H. Kim, K. R. Lee, and T. G. Park, “Amine-functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers,” International Journal of Pharmaceutics, vol. 364, no. 1, pp. 94–101, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. A. R. Wadhwani, W. L. Klein, and P. N. Lacor, “Efficient gene silencing in neural cells by functionalized gold nanoparticles,” Nanoscape, vol. 7, no. 1, pp. 6–10, 2010. View at Google Scholar
  61. R. B. Roemer, “Engineering aspects of hyperthermia therapy,” Annual Review of Biomedical Engineering, vol. 1, pp. 347–376, 1999. View at Google Scholar · View at Scopus
  62. P. Cherukuri, E. S. Glazer, and S. A. Curley, “Targeted hyperthermia using metal nanoparticles,” Advanced Drug Delivery Reviews, vol. 62, no. 3, pp. 339–345, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. D. P. O'Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Letters, vol. 209, no. 2, pp. 171–176, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Johannsen, U. Gneveckow, L. Eckelt et al., “Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique,” International Journal of Hyperthermia, vol. 21, no. 7, pp. 637–647, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles,” Photochemistry and Photobiology, vol. 82, no. 2, pp. 412–417, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” Journal of the American Chemical Society, vol. 128, no. 6, pp. 2115–2120, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. J. Chen, D. Wang, J. Xi et al., “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Letters, vol. 7, no. 5, pp. 1318–1322, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. Y. Haba, C. Kojima, A. Harada, T. Ura, H. Horinaka, and K. Kono, “Preparation of poly(ethylene glycol)-modified poly(amido amine) dendrimers encapsulating gold nanoparticles and their heat-generating ability,” Langmuir, vol. 23, no. 10, pp. 5243–5246, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Applications of gold nanorods for cancer imaging and photothermal therapy,” Methods in Molecular Biology, vol. 624, pp. 343–357, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. W. S. Kuo, C. N. Chang, Y. T. Chang et al., “Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging,” Angewandte Chemie—International Edition, vol. 49, no. 15, pp. 2711–2715, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. L. Tong, Q. Wei, A. Wei, and J. X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochemistry and Photobiology, vol. 85, no. 1, pp. 21–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Letters, vol. 5, no. 4, pp. 709–711, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. C. Loo, L. Hirsch, M. H. Lee et al., “Gold nanoshell bioconjugates for molecular imaging in living cells,” Optics Letters, vol. 30, no. 9, pp. 1012–1014, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: impending clinical impact,” Accounts of Chemical Research, vol. 41, no. 12, pp. 1842–1851, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for cancer detection and treatment,” Nanomedicine, vol. 2, no. 5, pp. 657–668, 2008. View at Publisher · View at Google Scholar
  76. Y. Xia, W. Li, C. M. Cobley et al., “Gold nanocages: from synthesis to theranostic applications,” Accounts of Chemical Research. In press. View at Publisher · View at Google Scholar
  77. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers in Medical Science, vol. 23, no. 3, pp. 217–228, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Letters, vol. 7, no. 7, pp. 1929–1934, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova et al., “Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy,” Journal of Biomedical Optics, vol. 14, no. 2, Article ID 021016, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. M. A. Sirotkina, V. V. Elagin, M. V. Shirmanova et al., “OCT-guided laser hyperthermia with passively tumor-targeted gold nanoparticles,” Journal of Biophotonics, vol. 3, no. 10-11, pp. 718–727, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. E. Y. Lukianova-Hleb, A. O. Oginsky, A. P. Samaniego et al., “Tunable plasmonic nanoprobes for theranostics of prostate cancer,” Theranostics, vol. 1, pp. 3–17, 2011. View at Google Scholar
  82. D. S. Wagner, N. A. Delk, E. Y. Lukianova-Hleb, J. H. Hafner, M. C. Farach-Carson, and D. O. Lapotko, “The in vivo performance of plasmonic nanobubbles as cell theranostic agents in zebrafish hosting prostate cancer xenografts,” Biomaterials, vol. 31, no. 29, pp. 7567–7574, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, “Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,” Lasers in Surgery and Medicine, vol. 38, no. 6, pp. 631–642, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. J. Cardinal, J. R. Klune, E. Chory et al., “Noninvasive radiofrequency ablation of cancer targeted by gold nanoparticles,” Surgery, vol. 144, no. 2, pp. 125–132, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, “Specific absorption rate and temperature elevation in a subject exposed in the far-field of radio-frequency sources operating in the 10–900-MHz range,” IEEE Transactions on Biomedical Engineering, vol. 50, no. 3, pp. 295–304, 2003. View at Publisher · View at Google Scholar · View at Scopus
  86. Y. F. Huang, K. Sefah, S. Bamrungsap, H. T. Chang, and W. Tan, “Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods,” Langmuir, vol. 24, no. 20, pp. 11860–11865, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. K. W. Hu, C. C. Huang, J. R. Hwu, W. C. Su, D. B. Shieh, and C. S. Yeh, “A new photothermal therapeutic agent: core-free nanostructured Au x Ag1-x dendrites,” Chemistry, vol. 14, no. 10, pp. 2956–2964, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. F. Y. Cheng, C. T. Chen, and C. S. Yeh, “Comparative efficiencies of photothermal destruction of malignant cells using antibody-coated silica@Au nanoshells, hollow Au/Ag nanospheres and Au nanorods,” Nanotechnology, vol. 20, no. 42, p. 425104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. F. Mohammad, G. Balaji, A. Weber, R. M. Uppu, and C. S. S. R. Kumar, “Influence of gold nanoshell on hyperthermia of superparamagnetic iron oxide nanoparticles,” Journal of Physical Chemistry C, vol. 114, no. 45, pp. 19194–19201, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. D. H. Kim, E. A. Rozhkova, T. Rajh, S. D. Bader, and V. Novosad, “Synthesis of hybrid gold/iron oxide nanoparticles in block copolymer micelles for imaging, drug delivery, and magnetic hyperthermia,” IEEE Transactions on Magnetics, vol. 45, no. 10, Article ID 5257027, pp. 4821–4824, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. B. Ehdaie, “Application of nanotechnology in cancer research: review of progress in the National Cancer Institute's alliance for nanotechnology,” International Journal of Biological Sciences, vol. 3, no. 2, pp. 108–110, 2007. View at Google Scholar · View at Scopus
  92. J. D. Gibson, B. P. Khanal, and E. R. Zubarev, “Paclitaxel-functionalized gold nanoparticles,” Journal of the American Chemical Society, vol. 129, no. 37, pp. 11653–11661, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. S. Dhar, W. L. Daniel, D. A. Giljohann, C. A. Mirkin, and S. J. Lippard, “Polyvalent oligonucleotide gold nanoparticle conjugates as delivery vehicles for platinum(IV) warheads,” Journal of the American Chemical Society, vol. 131, no. 41, pp. 14652–14653, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. S. D. Brown, P. Nativo, J. A. Smith et al., “Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin,” Journal of the American Chemical Society, vol. 132, no. 13, pp. 4678–4684, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. J. R. Hwu, Y. S. Lin, T. Josephrajan et al., “Targeted paclitaxel by conjugation to iron oxide and gold nanoparticles,” Journal of the American Chemical Society, vol. 131, no. 1, pp. 66–68, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. S. R. Sershen, S. L. Westcott, N. J. Halas, and J. L. West, “Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery,” Journal of Biomedical Materials Research, vol. 51, no. 3, pp. 293–298, 2000. View at Publisher · View at Google Scholar · View at Scopus
  97. H. C. Sang, “Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study,” Physics in Medicine and Biology, vol. 50, no. 15, pp. N163–N173, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. T. Kong, J. Zeng, X. Wang et al., “Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles,” Small, vol. 4, no. 9, pp. 1537–1543, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. R. Xu, J. Ma, X. Sun et al., “Ag nanoparticles sensitize IR-induced killing of cancer cells,” Cell Research, vol. 19, no. 8, pp. 1031–1034, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. J. H. Lee, Y. M. Huh, Y. W. Jun et al., “Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging,” Nature Medicine, vol. 13, no. 1, pp. 95–99, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. E. I. Altinoǧlu and J. H. Adair, “Near infrared imaging with nanoparticles,” Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol. 2, no. 5, pp. 461–477, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. J. Kneipp, H. Kneipp, B. Wittig, and K. Kneipp, “Novel optical nanosensors for probing and imaging live cells,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 6, no. 2, pp. 214–226, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. D. Kim, S. Park, H. L. Jae, Y. J. Yong, and S. Jon, “Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging,” Journal of the American Chemical Society, vol. 129, no. 24, pp. 7661–7665, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. P. Vartholomeos, M. Fruchard, A. Ferreira, and C. Mavroidis, “MRI-guided nanorobotic systems for therapeutic and diagnostic applications,” Annual Review of Biomedical Engineering, vol. 13, pp. 157–184, 2011. View at Publisher · View at Google Scholar
  105. E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin et al., “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Physics in Medicine and Biology, vol. 53, no. 18, pp. 4995–5009, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. J. C. Kah, M. Olivo, T. H. Chow et al., “Control of optical contrast using gold nanoshells for optical coherence tomography imaging of mouse xenograft tumor model in vivo,” Journal of Biomedical Optics, vol. 14, no. 5, p. 054015, 2009. View at Google Scholar · View at Scopus
  107. A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, and S. A. Boppart, “Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography,” Journal of Materials Chemistry, vol. 19, no. 35, pp. 6407–6411, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. X. Yang, E. W. Stein, S. Ashkenazi, and L. V. Wang, “Nanoparticles for photoacoustic imaging,” Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, vol. 1, no. 4, pp. 360–368, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. D. B. Chithrani, “Nanoparticles for improved therapeutics and imaging in cancer therapy,” Recent Patents on Nanotechnology, vol. 4, no. 3, pp. 171–180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. E. C. Cho, C. Glaus, J. Chen, M. J. Welch, and Y. Xia, “Inorganic nanoparticle-based contrast agents for molecular imaging,” Trends in Molecular Medicine, vol. 16, no. 12, pp. 561–573, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. D. J. Brenner and E. J. Hall, “Computed tomography—an increasing source of radiation exposure,” The New England Journal of Medicine, vol. 357, no. 22, pp. 2277–2284, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. D. Kim, M. K. Yu, T. S. Lee, J. J. Park, Y. Y. Jeong, and S. Jon, “Amphiphilic polymer-coated hybrid nanoparticles as CT/MRI dual contrast agents,” Nanotechnology, vol. 22, no. 15, p. 155101, 2011. View at Publisher · View at Google Scholar
  113. H. Y. Tseng, C. K. Lee, S. Y. Wu et al., “Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography,” Nanotechnology, vol. 21, no. 29, p. 295102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. A. S. Paranjape, R. Kuranov, S. Baranov et al., “Depth resolved photothermal OCT detection of macrophages in tissue using nanorose,” Biomedical Optics Express, vol. 1, no. 1, pp. 2–16, 2010. View at Google Scholar
  115. Y. Wang, X. Xie, X. Wang et al., “Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain,” Nano Letters, vol. 4, no. 9, pp. 1689–1692, 2004. View at Publisher · View at Google Scholar · View at Scopus
  116. M. Eghtedari, A. Oraevsky, J. A. Copland, N. A. Kotov, A. Conjusteau, and M. Motamedi, “High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system,” Nano Letters, vol. 7, no. 7, pp. 1914–1918, 2007. View at Publisher · View at Google Scholar · View at Scopus
  117. K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” European Journal of Radiology, vol. 70, no. 2, pp. 227–231, 2009. View at Publisher · View at Google Scholar · View at Scopus
  118. L. Bickford, J. Sun, K. Fu et al., “Enhanced multi-spectral imaging of live breast cancer cells using immunotargeted gold nanoshells and two-photon excitation microscopy,” Nanotechnology, vol. 19, no. 31, p. 315102, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. J. Kneipp, H. Kneipp, M. McLaughlin, D. Brown, and K. Kneipp, “In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates,” Nano Letters, vol. 6, no. 10, pp. 2225–2231, 2006. View at Publisher · View at Google Scholar · View at Scopus
  120. A. Matschulat, D. Drescher, and J. Kneipp, “Surface-enhanced Raman scattering hybrid nanoprobe multiplexing and imaging in biological systems,” ACS Nano, vol. 4, no. 6, pp. 3259–3269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. Y. S. Chen, Y. C. Hung, I. Liau, and G. S. Huang, “Assessment of the in vivo toxicity of gold nanoparticles,” Nanoscale Research Letters, vol. 4, no. 8, pp. 858–864, 2009. View at Publisher · View at Google Scholar · View at Scopus
  122. M. A. Dobrovolskaia and S. E. McNeil, “Immunological properties of engineered nanomaterials,” Nature Nanotechnology, vol. 2, no. 8, pp. 469–478, 2007. View at Publisher · View at Google Scholar · View at Scopus
  123. C. Lasagna-Reeves, D. Gonzalez-Romero, M. A. Barria et al., “Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice,” Biochemical and Biophysical Research Communications, vol. 393, no. 4, pp. 649–655, 2010. View at Publisher · View at Google Scholar · View at Scopus
  124. J. J. Li, D. Hartono, C. N. Ong, B. H. Bay, and L. Y. L. Yung, “Autophagy and oxidative stress associated with gold nanoparticles,” Biomaterials, vol. 31, no. 23, pp. 5996–6003, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. S. Hackenberg, A. Scherzed, M. Kessler et al., “Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells,” Toxicology Letters, vol. 201, no. 1, pp. 27–33, 2011. View at Publisher · View at Google Scholar
  126. P. V. Asharani, N. Xinyi, M. P. Hande, and S. Valiyaveettil, “DNA damage and p53-mediated growth arrest in human cells treated with platinum nanoparticles,” Nanomedicine, vol. 5, no. 1, pp. 51–64, 2010. View at Publisher · View at Google Scholar
  127. E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity,” Small, vol. 1, no. 3, pp. 325–327, 2005. View at Publisher · View at Google Scholar · View at Scopus
  128. Y. Pan, S. Neuss, A. Leifert et al., “Size-dependent cytotoxicity of gold nanoparticles,” Small, vol. 3, no. 11, pp. 1941–1949, 2007. View at Publisher · View at Google Scholar · View at Scopus
  129. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Letters, vol. 5, no. 5, pp. 829–834, 2005. View at Publisher · View at Google Scholar · View at Scopus
  130. M. E. H. El-Sayed, A. S. Hoffman, and P. S. Stayton, “Smart polymeric carriers for enhanced intracellular delivery of therapeutic macromolecules,” Expert Opinion on Biological Therapy, vol. 5, no. 1, pp. 23–32, 2005. View at Publisher · View at Google Scholar · View at Scopus
  131. X. L. Huang, B. Zhang, L. Ren et al., “In vivo toxic studies and biodistribution of near infrared sensitive Au-Au2S nanoparticles as potential drug delivery carriers,” Journal of Materials Science: Materials in Medicine, vol. 19, no. 7, pp. 2581–2588, 2008. View at Publisher · View at Google Scholar · View at Scopus
  132. C. K. Kim, P. Ghosh, C. Pagliuca, Z. J. Zhu, S. Menichetti, and V. M. Rotello, “Entrapment of hydrophobic drugs in nanoparticle monolayers with efficient release into cancer cells,” Journal of the American Chemical Society, vol. 131, no. 4, pp. 1360–1361, 2009. View at Publisher · View at Google Scholar · View at Scopus
  133. G. F. Paciotti, L. Myer, D. Weinreich et al., “Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery,” Drug Delivery, vol. 11, no. 3, pp. 169–183, 2004. View at Publisher · View at Google Scholar · View at Scopus
  134. R. K. Visaria, R. J. Griffin, B. W. Williams et al., “Enhancement of tumor thermal therapy using gold nanoparticle-assisted tumor necrosis factor-α delivery,” Molecular Cancer Therapeutics, vol. 5, no. 4, pp. 1014–1020, 2006. View at Publisher · View at Google Scholar · View at Scopus
  135. H. J. Yen, S. H. Hsu, and C. L. Tsai, “Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes,” Small, vol. 5, no. 13, pp. 1553–1561, 2009. View at Publisher · View at Google Scholar · View at Scopus
  136. Y. N. Sun, C. D. Wang, X. M. Zhang, L. Ren, and X. H. Tian, “Shape dependence of gold nanoparticles on in vivo acute toxicological effects and biodistribution,” Journal of Nanoscience and Nanotechnology, vol. 11, no. 2, pp. 1210–1216, 2011. View at Google Scholar
  137. Y. Qiu, Y. Liu, L. Wang et al., “Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods,” Biomaterials, vol. 31, no. 30, pp. 7606–7619, 2010. View at Publisher · View at Google Scholar · View at Scopus
  138. L. Braydich-Stolle, S. Hussain, J. J. Schlager, and M. C. Hofmann, “In vitro cytotoxicity of nanoparticles in mammalian germline stem cells,” Toxicological Sciences, vol. 88, no. 2, pp. 412–419, 2005. View at Publisher · View at Google Scholar · View at Scopus
  139. S. M. Hussain, K. L. Hess, J. M. Gearhart, K. T. Geiss, and J. J. Schlager, “In vitro toxicity of nanoparticles in BRL 3A rat liver cells,” Toxicology in Vitro, vol. 19, no. 7, pp. 975–983, 2005. View at Publisher · View at Google Scholar · View at Scopus
  140. K. F. Soto, A. Carrasco, T. G. Powell, K. M. Garza, and L. E. Murr, “Comparative in vitro cytotoxicity assessment of some manufacture dnanoparticulate materials characterized by transmission electron microscopy,” Journal of Nanoparticle Research, vol. 7, no. 2-3, pp. 145–169, 2005. View at Publisher · View at Google Scholar
  141. R. Foldbjerg, D. A. Dang, and H. Autrup, “Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549,” Archives of Toxicology, vol. 85, no. 7, pp. 743–750, 2011. View at Publisher · View at Google Scholar
  142. P. V. Asharani, Y. Lianwu, Z. Gong, and S. Valiyaveettil, “Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos,” Nanotoxicology, vol. 5, no. 1, pp. 43–54, 2011. View at Publisher · View at Google Scholar
  143. S. Bellucci, “Nanoparticles and nanodevices in biological applications,” Lecture Notes in Nanoscale Science and Technology, vol. 4, pp. 1–198, 2009. View at Google Scholar