Table of Contents Author Guidelines Submit a Manuscript
Journal of Drug Delivery
Volume 2013, Article ID 516749, 9 pages
http://dx.doi.org/10.1155/2013/516749
Research Article

Enhanced Dendritic Cell-Mediated Antigen-Specific CD4+ T Cell Responses: IFN-Gamma Aids TLR Stimulation

1Immunology and Vaccine Laboratory, Burnet Institute, Melbourne, VIC 3004, Australia
2Institute for Glycomics, Griffith University, Gold Coast, QLD 4215, Australia
3Department of Immunology, Monash University, Melbourne, VIC 3004, Australia
4College of Health and Biomedicine, Victoria University, VIC 3021, Australia
5VA Consulting Services, Melbourne, VIC 3030, Australia

Received 12 December 2012; Accepted 18 February 2013

Academic Editor: Theresia Thalhammer

Copyright © 2013 Kuo-Ching Sheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. S. Wilson and J. A. Villadangos, “Regulation of antigen presentation and cross-presentation in the dendritic cell network: facts, hypothesis, and immunological implications,” Advances in Immunology, vol. 86, pp. 241–305, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. O. Proudfoot, V. Apostolopoulos, and G. A. Pietersz, “Receptor-mediated delivery of antigens to dendritic cells: anticancer applications,” Molecular Pharmaceutics, vol. 4, no. 1, pp. 58–72, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Lemaitre, E. Nicolas, L. Michaut, J. M. Reichhart, and J. A. Hoffmann, “The dorsoventral regulatory gene cassette spatzle/Toll/Cactus controls the potent antifungal response in Drosophila adults,” Cell, vol. 86, no. 6, pp. 973–983, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Nomura, N. Miyajima, T. Sazuka et al., “Prediction of the coding sequences of unidentified human genes. I. The coding sequences of 40 new genes (KIAA0001-KIAA0040) deduced by analysis of randomly sampled cDNA clones from human immature myeloid cell line KG-1,” DNA Research, vol. 1, no. 1, pp. 27–35, 1994. View at Google Scholar · View at Scopus
  5. R. Medzhitov, P. Preston-Hurlburt, and C. A. Janeway Jr., “A human homologue of the Drosophila toll protein signals activation of adaptive immunity,” Nature, vol. 388, no. 6640, pp. 394–397, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Poltorak, I. Smirnova, X. He et al., “Genetic and physical mapping of the Lps locus: identification of the toll-4 receptor as a candidate gene in the critical region,” Blood Cells, Molecules, and Diseases, vol. 24, no. 3, pp. 340–355, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Kawai and S. Akira, “The role of pattern-recognition receptors in innate immunity: update on toll-like receptors,” Nature Immunology, vol. 11, no. 5, pp. 373–384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Kawai and S. Akira, “Toll-like receptors and their crosstalk with other innate receptors in infection and immunity,” Immunity, vol. 34, no. 5, pp. 637–650, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Kumar, T. Kawai, and S. Akira, “Toll-like receptors and innate immunity,” Biochemical and Biophysical Research Communications, vol. 388, no. 4, pp. 621–625, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. D. C. Jackson, F. L. Yuk, T. Le et al., “A totally synthetic vaccine of generic structure that targets Toll-like receptor 2 on dendritic cells and promotes antibody or cytotoxic T cell responses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 43, pp. 15440–15445, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. B. L. Wilkinson, S. Day, R. Chapman, S. Perrier, V. Apostolopoulos, and R. J. Payne, “Synthesis and immunological evaluation of self-assembling and self-adjuvanting tricomponent glycopeptide cancer-vaccine candidates,” Chemistry, vol. 18, pp. 16540–16548, 2012. View at Google Scholar
  12. B. L. Wilkinson, S. Day, L. R. Malins, V. Apostolopoulos, and R. J. Payne, “Self-adjuvanting multicomponent cancer vaccine candidates combining per-glycosylated muc1 glycopeptides and the toll-like receptor 2 agonist pam3CysSer,” Angewandte Chemie, vol. 50, no. 7, pp. 1635–1639, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. S. U. Ahmed, M. Okamoto, T. Oshikawa et al., “Anti-tumor effect of an intratumoral administration of dendritic cells in combination with TS-1, an oral fluoropyrimidine anti-cancer drug, and OK-432, a streptococcal immunopotentiator: involvement of toll-like receptor 4,” Journal of Immunotherapy, vol. 27, no. 6, pp. 432–441, 2004. View at Google Scholar · View at Scopus
  14. K. C. Sheng, M. Kalkanidis, D. S. Pouniotis et al., “Delivery of antigen using a novel mannosylated dendrimer potentiates immunogenicity in vitro and in vivo,” European Journal of Immunology, vol. 38, no. 2, pp. 424–436, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. K. C. Sheng, M. Kalkanidis, D. S. Pouniotis, M. D. Wright, G. A. Pietersz, and V. Apostolopoulos, “The adjuvanticity of a mannosylated antigen reveals TLR4 functionality essential for subset specialization and functional maturation of mouse dendritic cells,” Journal of Immunology, vol. 181, no. 4, pp. 2455–2464, 2008. View at Google Scholar · View at Scopus
  16. K. C. Sheng, G. A. Pietersz, M. D. Wright, and V. Apostolopoulos, “Dendritic cells: activation and maturation—applications for cancer immunotherapy,” Current Medicinal Chemistry, vol. 12, no. 15, pp. 1783–1800, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. K. C. Sheng, D. S. Pouniotis, M. D. Wright et al., “Mannan derivatives induce phenotypic and functional maturation of mouse dendritic cells,” Immunology, vol. 118, no. 3, pp. 372–383, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. C. K. Tang, K. C. Sheng, S. E. Esparon, O. Proudfoot, V. Apostolopoulos, and G. A. Pietersz, “Molecular basis of improved immunogenicity in DNA vaccination mediated by a mannan based carrier,” Biomaterials, vol. 30, no. 7, pp. 1389–1400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Craft, K. W. Bruhn, B. D. Nguyen et al., “The TLR7 agonist imiquimod enhances the anti-melanoma effects of a recombinant Listeria monocytogenes vaccine,” Journal of Immunology, vol. 175, no. 3, pp. 1983–1990, 2005. View at Google Scholar · View at Scopus
  20. S. Xu, U. Koldovsky, M. Xu et al., “High-avidity antitumor T-cell generation by toll receptor 8-primed, myeloid- derived dendritic cells is mediated by IL-12 production,” Surgery, vol. 140, no. 2, pp. 170–178, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. M. H. M. G. M. Den Brok, R. P. M. Sutmuller, S. Nierkens et al., “Synergy between in situ cryoablation and TLR9 stimulation results in a highly effective in vivo dendritic cell vaccine,” Cancer Research, vol. 66, no. 14, pp. 7285–7292, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Frederick Wheelock, “Interferon-like virus-inhibitor induced in human leukocytes by phytohemagglutinin,” Science, vol. 149, no. 3681, pp. 310–311, 1965. View at Google Scholar · View at Scopus
  23. E. F. Wheelock and W. A. Sibley, “Circulating virus, interferon and antibody after vaccination with the 17-D strain of yellow-fever virus,” The New England Journal of Medicine, vol. 273, pp. 194–198, 1965. View at Google Scholar · View at Scopus
  24. P. Parronchi, M. De Carli, R. Manetti et al., “IL-4 and IFN (α and γ) exert opposite regulatory effects on the development of cytolytic potential by Th1 or Th2 human T cell clones,” Journal of Immunology, vol. 149, no. 9, pp. 2977–2983, 1992. View at Google Scholar · View at Scopus
  25. P. Scott, “IFN-γ modulates the early development of Th1 and Th2 responses in a murine model of cutaneous leishmaniasis,” Journal of Immunology, vol. 147, no. 9, pp. 3149–3155, 1991. View at Google Scholar · View at Scopus
  26. A. Thakur, L. E. Pedersen, and G. Jungersen, “Immune markers and correlates of protection for vaccine induced immune responses,” Vaccine, vol. 30, pp. 4907–4920, 2012. View at Google Scholar
  27. P. Di Marzio, P. Puddu, L. Conti, F. Belardelli, and S. Gessani, “Interferon γ upregulates its own gene expression in mouse peritoneal macrophages,” Journal of Experimental Medicine, vol. 179, no. 5, pp. 1731–1736, 1994. View at Google Scholar · View at Scopus
  28. W. P. Lafuse, D. Brown, L. Castle, and B. S. Zwilling, “IFN-γ increases cathepsin H mRNA levels in mouse macrophages,” Journal of Leukocyte Biology, vol. 57, no. 4, pp. 663–669, 1995. View at Google Scholar · View at Scopus
  29. N. Li, R. C. Salter, and D. P. Ramji, “Molecular mechanisms underlying the inhibition of IFN-γ-induced, STAT1-mediated gene transcription in human macrophages by simvastatin and agonists of PPARs and LXRs,” Journal of Cellular Biochemistry, vol. 112, no. 2, pp. 675–683, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Marodi and R. B. Johnston Jr., “Enhancement of macrophage candidacidal activity by interferon-gamma,” Immunodeficiency, vol. 4, no. 1–4, pp. 181–185, 1993. View at Google Scholar · View at Scopus
  31. L. Marodi, S. Schreiber, D. C. Anderson, R. P. MacDermott, H. M. Korchak, and R. B. Johnston Jr., “Enhancement of macrophage candidacidal activity by interferon-γ. Increased phagocytosis, killing, and calcium signal mediated by a decreased number of mannose receptors,” Journal of Clinical Investigation, vol. 91, no. 6, pp. 2596–2601, 1993. View at Google Scholar · View at Scopus
  32. I. J. Molina and B. T. Huber, “Regulation of macrophage activation markers by IL-4 and IFN-γ is subpopulation-specific,” Cellular Immunology, vol. 134, no. 1, pp. 241–248, 1991. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Perona-Wright, K. Mohrs, and M. Mohrs, “Sustained signaling by canonical helper T cell cytokines throughout the reactive lymph node,” Nature Immunology, vol. 11, no. 6, pp. 520–526, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Chen and L. B. Ivashkiv, “IFN-γ abrogates endotoxin tolerance by facilitating Toll-like receptor-induced chromatin remodeling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 45, pp. 19438–19443, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Dragičević, T. Džopalić, S. Vasilijić et al., “The influence of CD40 ligation and interferon-γ on functional properties of human monocyte-derived dendritic cells activated with polyinosinic-polycytidylic acid,” Vojnosanitetski Pregled, vol. 68, no. 4, pp. 301–308, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. X. Hu, P. K. Paik, J. Chen et al., “IFN-γ suppresses IL-10 production and synergizes with TLR2 by regulating GSK3 and CREB/AP-1 proteins,” Immunity, vol. 24, no. 5, pp. 563–574, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Southworth, A. Metryka, S. Lea, S. Farrow, J. Plumb, and D. Singh, “IFN-gamma synergistically enhances LPS signalling in alveolar macrophages from COPD patients and controls by corticosteroid-resistant STAT1 activation,” British Journal of Pharmacology, vol. 166, pp. 2070–2083, 2012. View at Google Scholar
  38. M. J. Barnden, J. Allison, W. R. Heath, and F. R. Carbone, “Defective TCR expression in transgenic mice constructed using cDNA- based α- and β-chain genes under the control of heterologous regulatory elements,” Immunology and Cell Biology, vol. 76, no. 1, pp. 34–40, 1998. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Abdelsadik and A. Trad, “Toll-like receptors on the fork roads between innate and adaptive immunity,” Human Immunology, vol. 72, pp. 1188–1193, 2011. View at Google Scholar
  40. K. B. Corden, K. S. Gorski, S. J. Gibson et al., “Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8,” Journal of Immunology, vol. 174, no. 3, pp. 1259–1268, 2005. View at Google Scholar · View at Scopus
  41. U. Wille-Reece, C. Y. Wu, B. J. Flynn, R. M. Kedl, and R. A. Seder, “Immunization with HIV-1 gag protein conjugated to a TLR7/8 agonist results in the generation of HIV-1 gag-specific Th1 and CD8+ T cell responses,” Journal of Immunology, vol. 174, no. 12, pp. 7676–7683, 2005. View at Google Scholar · View at Scopus
  42. D. Tudor, C. Dubuquoy, V. Gaboriau, F. Lefèvre, B. Charley, and S. Riffault, “TLR9 pathway is involved in adjuvant effects of plasmid DNA-based vaccines,” Vaccine, vol. 23, no. 10, pp. 1258–1264, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. J. W. Huleatt, A. R. Jacobs, J. Tang et al., “Vaccination with recombinant fusion proteins incorporating Toll-like receptor ligands induces rapid cellular and humoral immunity,” Vaccine, vol. 25, no. 4, pp. 763–775, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Schroder, M. J. Sweet, and D. A. Hume, “Signal integration between IFNγ and TLR signalling pathways in macrophages,” Immunobiology, vol. 211, no. 6–8, pp. 511–524, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. B. Bauvois, J. Nguyen, R. Tang, C. Billard, and J. P. Kolb, “Types I and II interferons upregulate the costimulatory CD80 molecule in monocytes via interferon regulatory factor-1,” Biochemical Pharmacology, vol. 78, no. 5, pp. 514–522, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. M. P. Hayes, J. Wang, and M. A. Norcross, “Regulation of interleukin-12 expression in human monocytes: selective priming by interferon-γ of lipopolysaccharide-inducible p35 and p40 genes,” Blood, vol. 86, no. 2, pp. 646–650, 1995. View at Google Scholar · View at Scopus
  47. C. Zhao, M. W. Wood, E. E. Galyov et al., “Salmonella typhimurium infection triggers dendritic cells and macrophages to adopt distinct migration patterns in vivo,” European Journal of Immunology, vol. 36, no. 11, pp. 2939–2950, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. F. Gerosa, B. Baldani-Guerra, C. Nisii, V. Marchesini, G. Carra, and G. Trinchieri, “Reciprocal activating interaction between natural killer cells and dendritic cells,” Journal of Experimental Medicine, vol. 195, no. 3, pp. 327–333, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. C. P. Larsen, S. C. Ritchie, R. Hendrix et al., “Regulation of immunostimulatory function and costimulatory molecule (B7-1 and B7-2) expression on murine dendritic cells,” Journal of Immunology, vol. 152, no. 11, pp. 5208–5219, 1994. View at Google Scholar · View at Scopus
  50. S. L. Koide, K. Inaba, and R. M. Steinman, “Interleukin 1 enhances T-dependent immune responses by amplifying the function of dendritic cells,” Journal of Experimental Medicine, vol. 165, no. 2, pp. 515–530, 1987. View at Google Scholar · View at Scopus