Table of Contents Author Guidelines Submit a Manuscript
Journal of Drug Delivery
Volume 2013 (2013), Article ID 616197, 12 pages
Review Article

MRI-Guided Focused Ultrasound as a New Method of Drug Delivery

1Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, UK
2Department of Experimental Medicine, Imperial College, St. Mary’s Hospital, Praed Street, London W2 1NY, UK

Received 18 November 2012; Accepted 5 February 2013

Academic Editor: Andreas G. Tzakos

Copyright © 2013 M. Thanou and W. Gedroyc. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Ultrasound-mediated drug delivery under the guidance of an imaging modality can improve drug disposition and achieve site-specific drug delivery. The term focal drug delivery has been introduced to describe the focal targeting of drugs in tissues with the help of imaging and focused ultrasound. Focal drug delivery aims to improve the therapeutic profile of drugs by improving their specificity and their permeation in defined areas. Focused-ultrasound- (FUS-) mediated drug delivery has been applied with various molecules to improve their local distribution in tissues. FUS is applied with the aid of microbubbles to enhance the permeability of bioactive molecules across BBB and improve drug distribution in the brain. Recently, FUS has been utilised in combination with MRI-labelled liposomes that respond to temperature increase. This strategy aims to “activate” nanoparticles to release their cargo locally when triggered by hyperthermia induced by FUS. MRI-guided FUS drug delivery provides the opportunity to improve drug bioavailability locally and therefore improve the therapeutic profiles of drugs. This drug delivery strategy can be directly translated to clinic as MRg FUS is a promising clinically therapeutic approach. However, more basic research is required to understand the physiological mechanism of FUS-enhanced drug delivery.