Table of Contents Author Guidelines Submit a Manuscript
Journal of Drug Delivery
Volume 2013, Article ID 637976, 17 pages
http://dx.doi.org/10.1155/2013/637976
Review Article

Bisphosphonates and Cancer: What Opportunities from Nanotechnology?

1Department of Pharmacy, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 8013 Naples, Italy
2Department of Biochemistry, Biophysics and General Pathology, Seconda Università degli Studi di Napoli, Via Costantinopoli 16, 80138 Naples, Italy

Received 4 December 2012; Accepted 22 January 2013

Academic Editor: Stefano Salmaso

Copyright © 2013 Giuseppe De Rosa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. R. Ross, Y. Saunders, P. M. Edmonds et al., “A systematic review of the role of bisphosphonates in metastatic disease,” Health Technology Assessment, vol. 8, no. 4, pp. 1–176, 2004. View at Google Scholar · View at Scopus
  2. H. Fleisch, R. G. G. Russell, S. Bisaz, P. A. Casey, and R. C. Mühlbauer, “The influence of pyrophosphate analogues (diphosphonates) on the precipitation and dissolution of calcium phosphate in vitro and in vivo,” Calcified Tissue Research, vol. 2, no. 1, p. 10, 1968. View at Publisher · View at Google Scholar · View at Scopus
  3. R. G. Russell, “Bisphosphonates: the first 40 years,” Bone, vol. 49, no. 1, pp. 2–19, 2011. View at Publisher · View at Google Scholar
  4. L. Widler, W. Jahnke, and J. R. Green, “The chemistry of bisphosphonates: from antiscaling agents to clinical therapeutics,” Anticancer Agents in Medicinals Chemistry, vol. 12, no. 2, pp. 95–101, 2012. View at Publisher · View at Google Scholar
  5. R. G. Russell, “Bisphosphonates: mode of action and pharmacology,” Pediatrics, vol. 119, supplement 2, pp. S150–S162, 2007. View at Publisher · View at Google Scholar
  6. J. E. Dunford, K. Thompson, F. P. Coxon et al., “Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates,” Journal of Pharmacology and Experimental Therapeutics, vol. 296, no. 2, pp. 235–242, 2001. View at Google Scholar · View at Scopus
  7. J. R. Green, “Antitumor effects of bisphosphonates,” Cancer, vol. 97, no. 3, pp. 840–847, 2003. View at Google Scholar · View at Scopus
  8. F. H. Ebetino, A. M. Hogan, S. Sun et al., “The relationship between the chemistry and biological activity of the bisphosphonate,” Bone, vol. 49, no. 1, pp. 20–33, 2011. View at Publisher · View at Google Scholar
  9. L. I. Plotkin, R. S. Weinstein, A. M. Parfitt, P. K. Roberson, S. C. Manolagas, and T. Bellido, “Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin,” The Journal of Clinical Investigation, vol. 104, no. 10, pp. 1363–1374, 1999. View at Google Scholar · View at Scopus
  10. M. J. Rogers, D. J. Watts, R. G. G. Russell et al., “Inhibitory effects of bisphosphonates on growth of amoebae of the cellular slime mold Dictyostelium discoideum,” Journal of Bone and Mineral Research, vol. 9, no. 7, pp. 1029–1039, 1994. View at Google Scholar · View at Scopus
  11. M. J. Rogers, “From molds and macrophages to mevalonate: a decade of progress in understanding the molecular mode of action of bisphosphonates,” Calcified Tissue International, vol. 75, no. 6, pp. 451–461, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. M. J. Rogers, R. J. Brown, V. Hodkin, R. G. G. Russell, D. J. Watts, and G. M. Blackburn, “Bisphosphonates are incorporated into adenine nucleotides by human aminoacyl-tRNA synthetase enzymes,” Biochemical and Biophysical Research Communications, vol. 224, no. 3, pp. 863–869, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. J. C. Frith, J. Monkkonen, S. Auriola, H. Monkkonen, and M. J. Rogers, “The molecular mechanism of action of the antiresorptive and anti-inflammatory drug clodronate: evidence for the formation in vivo of a metabolite that inhibits bone resorption andcauses osteoclast and macrophage apoptosis,” Arthritis & Rheumatism, vol. 44, no. 9, pp. 2201–2210, 2001. View at Google Scholar
  14. P. P. Lehenkari, M. Kellinsalmi, J. P. Näpänkangas et al., “Further insight into mechanism of action of clodronate: inhibition of mitochondrial ADP/ATP translocase by a nonhydrolyzable, adenine-containing metabolite,” Molecular Pharmacology, vol. 61, no. 5, pp. 1255–1262, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. J. M. Halasy-Nagy, G. A. Rodan, and A. A. Reszka, “Inhibition of bone resorption by alendronate and risedronate does not require osteoclast apoptosis,” Bone, vol. 29, no. 6, pp. 553–559, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. A. J. Roelofs, K. Thompson, S. Gordon, and M. J. Rogers, “Molecular mechanisms of action of bisphosphonates: current status,” Clinical Cancer Research, vol. 12, no. 20, part 2, pp. 6222s–6230s, 2006. View at Google Scholar
  17. J. R. Berenson, “Antitumor effects of bisphosphonates: from the laboratory to the clinic,” Current Opinion in Supportive & Palliative Care, vol. 5, no. 3, pp. 233–240, 2011. View at Google Scholar
  18. P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature, vol. 407, no. 6801, pp. 249–257, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Carmeliet, “Angiogenesis in health and disease,” Nature Medicine, vol. 9, pp. 653–660, 2003. View at Publisher · View at Google Scholar
  20. M. Caraglia, D. Santini, M. Marra, B. Vincenzi, G. Tonini, and A. Budillon, “Emerging anti-cancer molecular mechanisms of aminobisphosphonates,” Endocrine-Related Cancer, vol. 13, no. 1, pp. 7–26, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Claassen and N. van Rooijen, “The effect of elimination of macrophages on the tissue distribution of liposomes containing [3H]methotrexate,” Biochimica et Biophysica Acta, vol. 802, no. 3, pp. 428–434, 1984. View at Publisher · View at Google Scholar · View at Scopus
  22. N. van Rooijen and R. van Nieuwmegen, “Elimination of phagocytic cells in the spleen after intravenous injection of liposome encapsulated dichloromethylene diphosphonate. An enzyme-histochemical study,” Cell and Tissue Research, vol. 238, no. 2, pp. 355–358, 1984. View at Google Scholar · View at Scopus
  23. N. van Rooijen, “The liposome-mediated macrophage ‘suicide’ technique,” Journal of Immunological Methods, vol. 124, no. 1, pp. 1–6, 1989. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Mönkkönen, N. Pennanen, S. Lapinjoki, and A. Urtti, “Clodronate (dichloromethylene bisphosphonate) inhibits LPS-stimulated IL-6 and TNF production by RAW 264 cells,” Life Sciences, vol. 54, no. 14, pp. PL229–PL234, 1994. View at Publisher · View at Google Scholar · View at Scopus
  25. N. van Rooijen and E. Claassen, “In vivo elimination of macrophages in spleen and liver, using liposome encapsulated drugs: methods and applications,” in Liposomes as Drug Carriers: Trends and Progress, G. Gregoriadis, Ed., chapter 9, pp. 131–143, John Wiley & Sons, Chichester, UK, 1988. View at Google Scholar
  26. N. van Rooijen, R. van Nieuwmegen, and E. W. A. Kamperdijk, “Elimination of phagocytic cells in the spleen after intravenous injection of liposome-encapsulated dichloromethylene diphosphonate. Ultrastructural aspects of elimination of marginal zone macrophages,” Virchows Archiv B, vol. 49, no. 1, pp. 375–383, 1985. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Pennanen, S. Lapinjoki, A. Urtti, and J. Mönkkönen, “Effect of liposomal and free bisphosphonates on the IL-1β, IL-6 and TNFα secretion from RAW 264 cells in vitro,” Pharmaceutical Research, vol. 12, no. 6, pp. 916–922, 1995. View at Google Scholar · View at Scopus
  28. F. G. A. Delemarre, N. Kors, G. Kraal, and N. van Rooijen, “Repopulation of macrophages in popliteal lymph nodes of mice after liposome-mediated depletion,” Journal of Leukocyte Biology, vol. 47, no. 3, pp. 251–257, 1990. View at Google Scholar · View at Scopus
  29. T. Thepen, N. van Rooijen, and G. Kraal, “Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice,” The Journal of Experimental Medicine, vol. 170, no. 2, pp. 499–509, 1989. View at Google Scholar · View at Scopus
  30. G. Heuff, H. S. A. Oldenburg, H. Boutkan et al., “Enhanced tumour growth in the rat liver after selective elimination of Kupffer cells,” Cancer Immunology and Immunotherapy, vol. 37, no. 2, pp. 125–130, 1993. View at Google Scholar · View at Scopus
  31. S. M. Zeisberger, B. Odermatt, C. Marty, A. H. Zehnder-Fjällman, K. Ballmer-Hofer, and R. A. Schwendener, “Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach,” British Journal of Cancer, vol. 95, no. 3, pp. 272–281, 2006. View at Publisher · View at Google Scholar
  32. Y. N. Kimura, K. Watari, A. Fotovati et al., “Inflammatory stimuli from macrophages and cancer cells synergistically promote tumor growth and angiogenesis,” Cancer Science, vol. 98, no. 12, pp. 2009–2018, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Gazzaniga, A. I. Bravo, A. Guglielmotti et al., “Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft,” Journal of Investigative Dermatology, vol. 127, no. 8, pp. 2031–2041, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. W. Zhang, X. D. Zhu, H. C. Sun et al., “Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects,” Clinical Cancer Research, vol. 16, no. 13, pp. 3420–3430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. M. L. Sherman, R. Datta, D. E. Hallahan, R. R. Weichselbaum, and D. W. Kufe, “Regulation of tumor necrosis factor gene expression by ionizing radiation in human myeloid leukemia cells and peripheral blood monocytes,” The Journal of Clinical Investigation, vol. 87, no. 5, pp. 1794–1797, 1991. View at Google Scholar · View at Scopus
  36. Y. Meng, M. A. Beckett, H. Liang et al., “Blockade of tumor necrosis factor α signaling in tumor-associated macrophages as a radiosensitizing strategy,” Cancer Research, vol. 70, no. 4, pp. 1534–1543, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. S. W. Kim, J. S. Kim, J. Papadopoulos et al., “Consistent interactions between tumor cell IL-6 and macrophage TNF-α enhance the growth of human prostate cancer cells in the bone of nude mouse,” International Immunopharmacology, vol. 11, no. 7, pp. 862–872, 2011. View at Publisher · View at Google Scholar
  38. S. Hafeman, C. London, R. Elmslie, and S. Dow, “Evaluation of liposomal clodronate for treatment of malignant histiocytosis in dogs,” Cancer Immunology and Immunotherapy, vol. 59, no. 3, pp. 441–452, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. I. Chebbi, E. Migianu-Griffoni, O. Sainte-Catherine, M. Lecouvey, and O. Seksek, “In vitro assessment of liposomal neridronate on MDA-MB-231 human breast cancer cells,” International Journal of Pharmaceutics, vol. 383, no. 1-2, pp. 116–122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Marra, G. Salzano, C. Leonetti et al., “Nanotechnologies to use bisphosphonates as potent anticancer agents: the effects of zoledronic acid encapsulated into liposomes,” Nanomedicine, vol. 7, no. 6, pp. 955–964, 2011. View at Publisher · View at Google Scholar
  41. M. Marra, G. Salzano, C. Leonetti et al., “New self-assembly nanoparticles and stealth liposomes for the delivery of zoledronic acid: a comparative study,” Biotechnology Advances, vol. 30, no. 1, pp. 302–309, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Shmeeda, Y. Amitay, J. Gorin et al., “Delivery of zoledronic acid encapsulated in folate-targeted liposome results in potent in vitro cytotoxic activity on tumor cells,” Journal of Controlled Release, vol. 146, no. 1, pp. 76–83, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. G. Salzano, M. Marra, M. Porru et al., “Self-assembly nanoparticles for the delivery of bisphosphonates into tumors,” International Journal of Pharmaceutics, vol. 403, no. 1-2, pp. 292–297, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Lalatonne, C. Paris, J. M. Serfaty, P. Weinmann, M. Lecouvey, and L. Motte, “Bis-phosphonates-ultra small superparamagnetic iron oxide nanoparticles: a platform towards diagnosis and therapy,” Chemical Communications, no. 22, pp. 2553–2555, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. F. Benyettou, Y. Lalatonne, O. Sainte-Catherine, M. Monteil, and L. Motte, “Superparamagnetic nanovector with anti-cancer properties: γFe2O3@Zoledronate,” International Journal of Pharmaceutics, vol. 379, no. 2, pp. 324–327, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. F. Benyettou, E. Guenin, Y. Lalatonne, and L. Motte, “Microwave assisted nanoparticle surface functionalization,” Nanotechnology, vol. 22, no. 5, Article ID 055102, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Anada, Y. Takeda, Y. Honda, K. Sakurai, and O. Suzuki, “Synthesis of calcium phosphate-binding liposome for drug delivery,” Bioorganic & Medicinal Chemistry Letters, vol. 19, no. 15, pp. 4148–4150, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Salerno, E. Cenni, C. Fotia et al., “Bone-targeted doxorubicin-loaded nanoparticles as a tool for the treatment of skeletal metastases,” Current Cancer Drug Targets, vol. 10, no. 7, pp. 649–659, 2010. View at Google Scholar
  49. K. Ramanlal Chaudhari, A. Kumar, V. K. Megraj Khandelwal et al., “Bone metastasis targeting: a novel approach to reach bone using Zoledronate anchored PLGA nanoparticle as carrier system loaded with Docetaxel,” Journal of Controlled Release, vol. 158, no. 3, pp. 470–478, 2012. View at Publisher · View at Google Scholar
  50. C. Clementi, K. Miller, A. Mero, R. Satchi-Fainaro, and G. Pasut, “Dendritic poly(ethylene glycol) bearing paclitaxel and alendronate for targeting bone neoplasms,” Molecular Pharmaceutics, vol. 8, no. 4, pp. 1063–1072, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. K. L. Kavanagh, K. Guo, J. E. Dunford et al., “The molecular mechanism of nitrogen-containing bisphosphonates as anti-osteoporosis drugs: crystal structure and inhibition of farnesyl pyrophosphate synthase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 20, pp. 7829–7834, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Thompson, M. J. Rogers, F. P. Coxon, and J. C. Crockett, “Cytosolic entry of bisphosphonate drugs requires acidification of vesicles after fluid-phase endocytosis,” Molecular Pharmacology, vol. 69, no. 5, pp. 1624–1632, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Ibrahim, N. Scher, G. Williams et al., “Approval summary for zoledronic acid for treatment of multiple myeloma and cancer bone metastases,” Clinical Cancer Research, vol. 9, no. 7, pp. 2394–2399, 2003. View at Google Scholar · View at Scopus
  54. T. Chen, J. Berenson, R. Vescio et al., “Pharmacokinetics and pharmacodynamics of zoledronic acid in cancer patients with bone metastases,” Journal of Clinical Pharmacology, vol. 42, no. 11, pp. 1228–1236, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Skerjanec, J. Berenson, C. H. Hsu et al., “The pharmacokinetics and pharmacodynamics of zoledronic acid in cancer patients with varying degrees of renal function,” Journal of Clinical Pharmacology, vol. 43, no. 2, pp. 154–162, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. J. H. Lin, “Bisphosphonates: a review of their pharmacokinetic properties,” Bone, vol. 18, no. 2, pp. 75–85, 1996. View at Publisher · View at Google Scholar
  57. J. Barrett, E. Worth, F. Bauss, and S. Epstein, “Ibandronate: a clinical pharmacological and pharmacokinetic update,” Journal of Clinical Pharmacology, vol. 44, no. 9, pp. 951–965, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. H. M. Weiss, U. Pfaar, A. Schweitzer, H. Wiegand, A. Skerjanec, and H. Schran, “Biodistribution and plasma protein binding of zoledronic acid,” Drug Metabolism and Disposition, vol. 36, no. 10, pp. 2043–2049, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. L. M. Pickering and J. L. Mansi, “Adhesion of breast cancer cells to extracellular matrices is inhibited by zoledronic acid and enhanced by aberrant Ras signaling,” American Society of Clinical Oncology, vol. 22, p. 863, 2003. View at Google Scholar
  60. J. Wood, K. Bonjean, S. Ruetz et al., “Novel antiangiogenic effects of the bisphosphonate compound zoledronic acid,” Journal of Pharmacology and Experimental Therapeutics, vol. 302, no. 3, pp. 1055–1061, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. P. I. Croucher, H. de Raeve, M. J. Perry et al., “Zoledronic acid treatment of 5T2MM-bearing mice inhibits the development of myeloma bone disease: evidence for decreased osteolysis, tumor burden and angiogenesis, and increased survival,” Journal of Bone and Mineral Research, vol. 18, no. 3, pp. 482–492, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. F. Dieli, N. Gebbia, F. Poccia et al., “Induction of γδ T-lymphocyte effector functions by bisphosphonate zoledronic acid in cancer patients in vivo,” Blood, vol. 102, no. 6, pp. 2310–2311, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. D. Santini, S. Galluzzo, B. Vincenzi et al., “New developments of aminobisphosphonates: the double face of Janus,” Annals of Oncology, vol. 18, supplement 6, pp. vi164–vi167, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. H. L. Benford, J. C. Frith, S. Auriola, J. Mönkkönen, and M. J. Rogers, “Farnesol and geranylgeraniol prevent activation of caspases by aminobisphosphonates: biochemical evidence for two distinct pharmacological classes of bisphosphonate drugs,” Molecular Pharmacology, vol. 56, no. 1, pp. 131–140, 1999. View at Google Scholar · View at Scopus
  65. F. P. Coxon, M. H. Helfrich, R. van't Hof et al., “Protein geranylgeranylation is required for osteoclast formation, function, and survival: inhibition by bisphosphonates and GGTI-298,” Journal of Bone and Mineral Research, vol. 15, no. 8, pp. 1467–1476, 2000. View at Google Scholar · View at Scopus
  66. S. Boissier, M. Ferreras, O. Peyruchaud et al., “Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases,” Cancer Research, vol. 60, no. 11, pp. 2949–2954, 2000. View at Google Scholar · View at Scopus
  67. G. Misso, M. Porru, A. Stoppacciaro et al., “Evaluation of the in vitro and in vivo antiangiogenic effects of denosumab and zoledronic acid,” Cancer Biology and Therapy, vol. 13, no. 14, pp. 1491–1500, 2012. View at Publisher · View at Google Scholar
  68. M. Bezzi, M. Hasmim, G. Bieler, O. Dormond, and C. Rüegg, “Zoledronate sensitizes endothelial cells to tumor necrosis factor-induced programmed cell death: evidence for the suppression of sustained activation of focal adhesion kinase and protein kinase B/Akt,” The Journal of Biological Chemistry, vol. 278, no. 44, pp. 43603–43614, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Marra, A. Abbruzzese, R. Addeo et al., “Cutting the limits of aminobisphosphonates: new strategies for the potentiation of their anti-tumour effects,” Current Cancer Drug Targets, vol. 9, no. 7, pp. 791–800, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Caraglia, A. M. D'Alessandro, M. Marra et al., “The farnesyl transferase inhibitor R115777 (Zarnestra) synergistically enhances growth inhibition and apoptosis induced on epidermoid cancer cells by Zoledronic acid (Zometa) and Pamidronate,” Oncogene, vol. 23, no. 41, pp. 6900–6913, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. S. G. Senaratne, J. L. Mansi, and K. W. Colston, “The bisphosphonate zoledronic acid impairs Ras membrane [correction of impairs membrane] localisation and induces cytochrome c release in breast cancer cells,” British Journal of Cancer, vol. 86, no. 9, pp. 1479–1486, 2002. View at Publisher · View at Google Scholar
  72. L. Sewing, F. Steinberg, H. Schmidt, and R. Göke, “The bisphosphonate zoledronic acid inhibits the growth of HCT-116 colon carcinoma cells and induces tumor cell apoptosis,” Apoptosis, vol. 13, no. 6, pp. 782–789, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Fujita, M. Tohi, K. Sawada et al., “Involvement of the mevalonate pathway in the antiproliferative effect of zoledronate on ACHN renal cell carcinoma cells,” Oncology Reports, vol. 27, no. 5, pp. 1371–1376, 2012. View at Google Scholar
  74. G. Ferretti, A. Fabi, P. Carlini et al., “Zoledronic-acid-induced circulating level modifications of angiogenic factors, metalloproteinases and proinflammatory cytokines in metastatic breast cancer patients,” Oncology, vol. 69, no. 1, pp. 35–43, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. R. S. Herbst and F. R. Khuri, “Mode of action of docetaxel—a basis for combination with novel anticancer agents,” Cancer Treatment Reviews, vol. 29, no. 5, pp. 407–415, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Ullén, L. Lennartsson, U. Harmenberg et al., “Additive/synergistic antitumoral effects on prostate cancer cells in vitro following treatment with a combination of docetaxel and zoledronic acid,” Acta Oncologica, vol. 44, no. 6, pp. 644–650, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. F. Fabbri, G. Brigliadori, S. Carloni et al., “Zoledronic acid increases docetaxel cytotoxicity through pMEK and Mcl-1 inhibition in a hormone-sensitive prostate carcinoma cell line,” Journal of Translational Medicine, vol. 6, article 43, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. B. Karabulut, C. Erten, M. K. Gul et al., “Docetaxel/zoledronic acid combination triggers apoptosis synergistically through downregulating antiapoptotic Bcl-2 protein level in hormone-refractory prostate cancer cells,” Cell Biology International, vol. 33, no. 2, pp. 239–246, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Marra, D. Santini, G. Meo et al., “CYR61 downmodulation potentiates the anticancer effects of zoledronic acid in androgen-independent prostate cancer cells,” International Journal of Cancer, vol. 125, no. 9, pp. 2004–2013, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. H. K. Koul, S. Koul, and R. B. Meacham, “New role for an established drug? Bisphosphonates as potential anticancer agents,” Prostate Cancer and Prostatic Diseases, vol. 15, no. 2, pp. 111–119, 2012. View at Publisher · View at Google Scholar
  81. E. Corey, L. G. Brown, J. E. Quinn et al., “Zoledronic acid exhibits inhibitory effects on osteoblastic and osteolytic metastases of prostate cancer,” Clinical Cancer Research, vol. 9, no. 1, pp. 295–306, 2003. View at Google Scholar · View at Scopus
  82. P. I. Croucher, H. de Raeve, M. J. Perry et al., “Zoledronic acid treatment of 5T2MM-bearing mice inhibits the development of myeloma bone disease: evidence for decreased osteolysis, tumor burden and angiogenesis, and increased survival,” Journal of Bone and Mineral Research, vol. 18, no. 3, pp. 482–492, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. E. Alvarez, M. Westmore, R. J. S. Galvin et al., “Properties of bisphosphonates in the 13762 rat mammary carcinoma model of tumor-induced bone resorption,” Clinical Cancer Research, vol. 9, no. 15, pp. 5705–5713, 2003. View at Google Scholar · View at Scopus
  84. A. Guenther, S. Gordon, M. Tiemann et al., “The bisphosphonate zoledronic acid has antimyeloma activity in vivo by inhibition of protein prenylation,” International Journal of Cancer, vol. 126, no. 1, pp. 239–246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. Y. Zheng, H. Zhou, K. Brennan et al., “Inhibition of bone resorption, rather than direct cytotoxicity, mediates the anti-tumour actions of ibandronate and osteoprotegerin in a murine model of breast cancer bone metastasis,” Bone, vol. 40, no. 2, pp. 471–478, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. P. I. Croucher, C. M. Shipman, B. van Camp, and K. Vanderkerken, “Bisphosphonates and osteoprotegerin as inhibitors of myeloma bone disease,” Cancer, vol. 97, no. supplement 3, pp. 818–824, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. J. C. Cruz, M. Alsina, F. Craig et al., “Ibandronate decreases bone disease development and osteoclast stimulatory activity in an in vivo model of human myeloma,” Experimental Hematology, vol. 29, no. 4, pp. 441–447, 2001. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Neudert, C. Fischer, B. Krempien, F. Bauss, and M. J. Seibel, “Site-specific human breast cancer (MDA-MB-231) metastases in nude rats: model characterisation and in vivo effects of ibandronate on tumour growth,” International Journal of Cancer, vol. 107, no. 3, pp. 468–477, 2003. View at Publisher · View at Google Scholar · View at Scopus
  89. G. van der Pluijm, I. Que, B. Sijmons et al., “Interference with the microenvironmental support impairs the de novo formation of bone metastases in vivo,” Cancer Research, vol. 65, no. 17, pp. 7682–7690, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. S. S. Padalecki, M. Carreon, B. Grubbs, Y. Cui, and T. A. Guise, “Androgen deprivation therapy enhances bone loss and prostate cancer metastases to bone: prevention by zoledronic acid,” Oncology, vol. 17, no. supplement 3, p. 32, 2003. View at Google Scholar
  91. S. Lu, J. Zhang, Z. Zhou et al., “Synergistic inhibitory activity of zoledronate and paclitaxel on bone metastasis in nude mice,” Oncology Reports, vol. 20, no. 3, pp. 581–587, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. P. D. Ottewell, B. Deux, H. Mönkkönen et al., “Differential effect of doxorubicin and zoledronic acid on intraosseous versus extraosseous breast tumor growth in vivo,” Clinical Cancer Research, vol. 14, no. 14, pp. 4658–4666, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. D. Santini, B. Vincenzi, S. Galluzzo et al., “Repeated intermittent low-dose therapy with zoledronic acid induces an early, sustained, and long-lasting decrease of peripheral vascular endothelial growth factor levels in cancer patients,” Clinical Cancer Research, vol. 13, no. 15, part 1, pp. 4482–4486, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. M. J. Auger and J. A. Ross, “The biology of the macrophage,” in The Macrophage: The Natural Immune System, C. E. Lewis and J. O'Donnell McGee, Eds., pp. 3–74, Oxford University Press, New York, NY, USA, 1992. View at Google Scholar
  95. D. P. Speert, “Macrophages in bacterial infection,” in The Macrophage: The Natural Immune System, C. E. Lewis and J. O'Donnell McGee, Eds., pp. 215–263, Oxford University Press, New York, NY, USA, 1992. View at Google Scholar
  96. E. R. Unanue and P. M. Allen, “The basis for the immuno- regulatory role of macrophages and other accessory cells,” Science, vol. 236, no. 4801, pp. 551–557, 1987. View at Publisher · View at Google Scholar
  97. I. J. Fidler, “Targeting of immunomodulators to mononuclear phagocytes for therapy of cancer,” Advanced Drug Delivery Reviews, vol. 2, no. 1, pp. 69–106, 1988. View at Google Scholar · View at Scopus
  98. R. C. Rees and H. Parry, “Macrophages in tumour immunology,” in The Macrophage: The Natural Immune System, C. E. Lewis and J. O'Donnell McGee, Eds., pp. 314–335, Oxford University Press, New York, NY, USA, 1992. View at Google Scholar
  99. N. B. Hao, M. H. Lü, Y. H. Fan et al., “Macrophages in tumor microenvironments and the progression of tumors,” Clinical and Developmental Immunology, vol. 2012, Article ID 948098, 11 pages, 2012. View at Publisher · View at Google Scholar
  100. S. M. Moghimi, A. C. Hunter, and T. L. Andresen, “Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective,” Annual Review of Pharmacological Toxicology, vol. 52, pp. 481–503, 2012. View at Publisher · View at Google Scholar
  101. S. Halin, S. H. Rudolfsson, N. van Rooijen, and A. Bergh, “Extratumoral macrophages promote tumor and vascular growth in an orthotopic rat prostate tumor model,” Neoplasia, vol. 11, no. 2, pp. 177–186, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. G. Salzano, M. Marra, C. Leonetti et al., “Nanotechnologies to use zoledronic acid as a potent antitumoral agent,” Journal of Drug Delivery Science and Technology, vol. 21, no. 3, pp. 283–284, 2011. View at Google Scholar · View at Scopus
  103. E. V. Giger, J. Puigmartí-Luis, R. Schlatter, B. Castagner, P. S. Dittrich, and J. C. Leroux, “Gene delivery with bisphosphonate-stabilized calcium phosphate nanoparticles,” Journal of Controlled Release, vol. 150, no. 1, pp. 87–93, 2011. View at Publisher · View at Google Scholar · View at Scopus
  104. F. Benyettou, Y. Lalatonne, I. Chebbi et al., “A multimodal magnetic resonance imaging nanoplatform for cancer theranostics,” Physical Chemistry Chemical Physics, vol. 13, no. 21, pp. 10020–10027, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. D. Wu and M. Wan, “Methylene diphosphonate-conjugated adriamycin liposomes: preparation, characteristics, and targeted therapy for osteosarcomas in vitro and in vivo,” Biomedical Microdevices, vol. 14, no. 3, pp. 497–510, 2012. View at Publisher · View at Google Scholar