Table of Contents Author Guidelines Submit a Manuscript
Journal of Drug Delivery
Volume 2013, Article ID 705265, 32 pages
http://dx.doi.org/10.1155/2013/705265
Review Article

Recent Trends in Multifunctional Liposomal Nanocarriers for Enhanced Tumor Targeting

1Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 140 the Fenway, Room 236, 360 Huntington Avenue, Boston, MA 02115, USA
2Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 140 the Fenway, Room 214, 360 Huntington Avenue, Boston, MA 02115, USA

Received 25 December 2012; Accepted 6 February 2013

Academic Editor: Tamer Elbayoumi

Copyright © 2013 Federico Perche and Vladimir P. Torchilin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. D. Bangham, M. M. Standish, and J. C. Watkins, “Diffusion of univalent ions across the lamellae of swollen phospholipids,” Journal of Molecular Biology, vol. 13, no. 1, pp. 238–252, 1965. View at Google Scholar · View at Scopus
  2. G. Gregoriadis, “Liposome research in drug delivery: the early days,” Journal of Drug Targeting, vol. 16, no. 7-8, pp. 520–524, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. D. J. Porteous, J. R. Dorin, G. McLachlan et al., “Evidence for safety and efficacy of DOTAP cationic liposome mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis,” Gene Therapy, vol. 4, no. 3, pp. 210–218, 1997. View at Google Scholar · View at Scopus
  4. G. J. Nabel, E. G. Nabel, Z. Y. Yang et al., “Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 23, pp. 11307–11311, 1993. View at Publisher · View at Google Scholar · View at Scopus
  5. N. D. James, R. J. Coker, D. Tomlinson et al., “Liposomal doxorubicin (Doxil): an effective new treatment for Kaposi's sarcoma in AIDS,” Clinical Oncology, vol. 6, no. 5, pp. 294–296, 1994. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Z. Wang, R. Langer, and O. C. Farokhzad, “Nanoparticle delivery of cancer drugs,” Annual Review of Medicine, vol. 63, pp. 185–198, 2012. View at Publisher · View at Google Scholar
  7. T. M. Allen and P. R. Cullis, “Liposomal drug delivery systems: from concept to clinical applications,” Advanced Drug Delivery Reviews, vol. 65, no. 1, pp. 36–48, 2012, 10.1016/j.addr.2012.09.037. View at Google Scholar
  8. V. P. Torchilin, “Recent advances with liposomes as pharmaceutical carriers,” Nature Reviews Drug Discovery, vol. 4, no. 2, pp. 145–160, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Song, H. Wu, K. Yoshino, and W. C. Zamboni, “Factors affecting the pharmacokinetics and pharmacodynamics of liposomal drugs,” Journal of Liposome Research, vol. 22, pp. 177–192, 2012. View at Publisher · View at Google Scholar
  10. A. A. Gabizon, O. Lyass, G. J. Berry, and M. Wildgust, “Cardiac safety of pegylated liposomal doxorubicin (Doxil/Caelyx) demonstrated by endomyocardial biopsy in patients with advanced malignancies,” Cancer Investigation, vol. 22, no. 5, pp. 663–669, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Gabizon, R. Catane, B. Uziely et al., “Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes,” Cancer Research, vol. 54, no. 4, pp. 987–992, 1994. View at Google Scholar · View at Scopus
  12. D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: The next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Barenholz, “Doxil(R)—the first FDA-approved nano-drug: lessons learned,” Journal of Controlled Release, vol. 160, pp. 117–134, 2012. View at Publisher · View at Google Scholar
  14. S. M. O'Brien, W. Aulitzky, D. Ben Yehuda et al., “Phase II study of marqibo in adult patients with refractory or relapsed philadelphia chromosome negative (Ph-) acute lymphoblastic leukemia (ALL),” Journal of Clinical Oncology, Abstract 6507, 2010, ASCO Annual Meeting 2010. View at Google Scholar
  15. Q. Zhang, X. E. Huang, and L. L. Gao, “A clinical study on the premedication of paclitaxel liposome in the treatment of solid tumors,” Biomedicine and Pharmacotherapy, vol. 63, no. 8, pp. 603–607, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. V. P. Torchilin, “Multifunctional nanocarriers,” Advanced Drug Delivery Reviews, vol. 58, no. 14, pp. 1532–1555, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, and R. Langer, “Nanocarriers as an emerging platform for cancer therapy,” Nature Nanotechnology, vol. 2, no. 12, pp. 751–760, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Matsumura and H. Maeda, “A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs,” Cancer Research, vol. 46, no. 12 I, pp. 6387–6392, 1986. View at Google Scholar · View at Scopus
  19. S. Zalipsky, M. Saad, R. Kiwan, E. Ber, N. Yu, and T. Minko, “Antitumor activity of new liposomal prodrug of mitomycin C in multidrug resistant solid tumor: insights of the mechanism of action,” Journal of Drug Targeting, vol. 15, no. 7-8, pp. 518–530, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Fang, H. Nakamura, and H. Maeda, “The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect,” Advanced Drug Delivery Reviews, vol. 63, no. 3, pp. 136–151, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. M. S. Newman, G. T. Colbern, P. K. Working, C. Engbers, and M. A. Amantea, “Comparative pharmacokinetics, tissue distribution, and therapeutic effectiveness of cisplatin encapsulated in long-circulating, pegylated liposomes (SPI-077) in tumor-bearing mice,” Cancer Chemotherapy and Pharmacology, vol. 43, pp. 1–7, 1999. View at Publisher · View at Google Scholar
  22. H. M. Patel, “Serum opsonins and liposomes: their interaction and opsonophagocytosis,” Critical Reviews in Therapeutic Drug Carrier Systems, vol. 9, no. 1, pp. 39–90, 1992. View at Google Scholar · View at Scopus
  23. Y. H. Bae and K. Park, “Targeted drug delivery to tumors: myths, reality and possibility,” Journal of Controlled Release, vol. 153, no. 3, pp. 198–205, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. E. J. Feldman, J. E. Lancet, J. E. Kolitz et al., “First-in-man study of CPX-351: a liposomal carrier containing cytarabine and daunorubicin in a fixed 5:1 molar ratio for the treatment of relapsed and refractory acute myeloid leukemia,” Journal of Clinical Oncology, vol. 29, no. 8, pp. 979–985, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Batist, K. A. Gelmon, K. N. Chi et al., “Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors,” Clinical Cancer Research, vol. 15, no. 2, pp. 692–700, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Santel, M. Aleku, N. Röder et al., “Atu027 prevents pulmonary metastasis in experimental and spontaneous mouse metastasis models,” Clinical Cancer Research, vol. 16, no. 22, pp. 5469–5480, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Prados, “A Phase I trial of nanoliposomal CPT-11 (NL CPT-11) in patients with recurrent high-grade gliomas,” ClinicalTrials.Gov (NCT00734682), University of California,, San Francisco, Calif, USA.
  28. T. Hamaguchi, Y. Matsumura, Y. Nakanishi et al., “Antitumor effect of MCC-465, pegylated liposomal doxorubicin tagged with newly developed monoclonal antibody GAH, in colorectal cancer xenografts,” Cancer Science, vol. 95, no. 7, pp. 608–613, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. K. K. Sankhala, A. C. Mita, R. Adinin et al., “A phase I pharmacokinetic (PK) study of MBP-426, a novel liposome encapsulated oxaliplatin,” Journal of Clinical Oncology, vol. 27, Abstract 2535, no. 15s, 2009, ASCO Annual Meeting 2009. View at Google Scholar
  30. I. SynerGene Therapeutics, “Safety study of infusion of SGT-53 to treat solid tumors,” ClinicalTrials.Gov, (NCT00470613).
  31. Celsion, “Phase 3 study of thermoDox with RadioFrequency Ablation (RFA) in treatment of Hepatocellular Carcinoma (HCC),” ClinicalTrials.Gov (NCT00617981).
  32. V. P. Torchilin, “Antinuclear antibodies with nucleosome-restricted specificity for targeted delivery of chemotherapeutic agents,” Therapeutic Delivery, vol. 1, no. 2, pp. 257–272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. J. M. Tuscano, S. M. Martin, Y. Ma, W. Zamboni, and R. T. O'Donnell, “Efficacy, biodistribution, and pharmacokinetics of CD22-targeted pegylated liposomal doxorubicin in a B-cell non-Hodgkin's lymphoma xenograft mouse model,” Clinical Cancer Research, vol. 16, no. 10, pp. 2760–2768, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Yang, M. K. Choi, F. D. Cui et al., “Antitumor effect of paclitaxel-loaded PEGylated immunoliposomes against human breast cancer cells,” Pharmaceutical Research, vol. 24, no. 12, pp. 2402–2411, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Zhang, H. Gao, L. Chen et al., “tumor targeting of vincristine by mBAFF-modified PEG liposomes in B lymphoma cells,” Cancer Letters, vol. 269, no. 1, pp. 26–36, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Maruyama, “Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects,” Advanced Drug Delivery Reviews, vol. 63, no. 3, pp. 161–169, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. X. Ying, H. Wen, W. L. Lu et al., “Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals,” Journal of Controlled Release, vol. 141, no. 2, pp. 183–192, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. D. K. Chang, C. T. Lin, C. H. Wu, and H. C. Wu, “A novel peptide enhances therapeutic efficacy of liposomal anti-cancer drugs in mice models of human lung cancer,” PLoS ONE, vol. 4, no. 1, article e4171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. Z. Wang, Y. Yu, W. Dai et al., “The use of a tumor metastasis targeting peptide to deliver doxorubicin-containing liposomes to highly metastatic cancer,” Biomaterials, vol. 33, pp. 8451–8460, 2012. View at Publisher · View at Google Scholar
  40. O. P. Medina, M. Haikola, M. Tahtinen et al., “Liposomal tumor targeting in drug delivery utilizing MMP-2- and MMP-9-binding ligands,” Journal of Drug Delivery, vol. 2011, Article ID 160515, 9 pages, 2011. View at Publisher · View at Google Scholar
  41. Z. Zhang and J. Yao, “Preparation of irinotecan-loaded folate-targeted liposome for tumor targeting delivery and its antitumor activity,” AAPS PharmSciTech, vol. 13, pp. 802–810, 2012. View at Publisher · View at Google Scholar
  42. S. R. Paliwal, R. Paliwal, H. C. Pal et al., “Estrogen-anchored pH-sensitive liposomes as nanomodule designed for site-specific delivery of doxorubicin in breast cancer therapy,” Molecular Pharmaceutics, vol. 9, pp. 176–186, 2012. View at Publisher · View at Google Scholar
  43. R. Bagari, D. Bansal, A. Gulbake, A. Jain, V. Soni, and S. K. Jain, “Chondroitin sulfate functionalized liposomes for solid tumor targeting,” Journal of Drug Targeting, vol. 19, no. 4, pp. 251–257, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. M. L. Immordino, F. Dosio, and L. Cattel, “Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential,” International journal of nanomedicine, vol. 1, no. 3, pp. 297–315, 2006. View at Google Scholar · View at Scopus
  45. D. C. Drummond, C. O. Noble, M. E. Hayes, J. W. Park, and D. B. Kirpotin, “Pharmacokinetics and in vivo drug release rates in liposomal nanocarrier development,” Journal of Pharmaceutical Sciences, vol. 97, no. 11, pp. 4696–4740, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. E. H. Kraut, M. N. Fishman, P. M. Lorusso et al., “Final results of a phase I study of liposome encapsulated SN-38 (LE-SN38): safety, pharmacogenomics, pharmacokinetics, and tumor response,” Journal of Clinical Oncology, vol. 23, no. 16S, 2005, ASCO Annual Meeting Proceedings. View at Google Scholar
  47. K. R. Whiteman, V. Subr, K. Ulbrich, and V. P. Torchilin, “Poly(HPMA)-coated liposomes demonstrate prolonged circulation in mice,” Journal of Liposome Research, vol. 11, no. 2-3, pp. 153–164, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. A. L. Klibanov, K. Maruyama, A. M. Beckerleg, V. P. Torchilin, and L. Huang, “Activity of amphipathic poly(ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target,” Biochimica et Biophysica Acta, vol. 1062, no. 2, pp. 142–148, 1991. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Maitani, A. Nakamura, T. Tanaka, and Y. Aso, “Hydration of surfactant-modified and PEGylated cationic cholesterol-based liposomes and corresponding lipoplexes by monitoring a fluorescent probe and the dielectric relaxation time,” International Journal of Pharmaceutics, vol. 427, pp. 372–378, 2012. View at Publisher · View at Google Scholar
  50. V. Reshetov, V. Zorin, A. Siupa, M. A. D'Hallewin, F. Guillemin, and L. Bezdetnaya, “Interaction of liposomal formulations of meta-tetra(hydroxyphenyl)chlorin (Temoporfin) with serum proteins: protein binding and liposome destruction,” Photochemistry and Photobiology, vol. 88, pp. 1256–1264, 2012. View at Publisher · View at Google Scholar
  51. R. Gref, M. Lück, P. Quellec et al., “'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption,” Colloids and Surfaces B, vol. 18, no. 3-4, pp. 301–313, 2000. View at Publisher · View at Google Scholar · View at Scopus
  52. T. H. Chow, Y. Y. Lin, J. J. Hwang et al., “Improvement of biodistribution and therapeutic index via increase of polyethylene glycol on drug-carrying liposomes in an HT-29/luc xenografted mouse model,” Anticancer Research, vol. 29, no. 6, pp. 2111–2120, 2009. View at Google Scholar · View at Scopus
  53. C. M. Lee, Y. Choi, E. J. Huh et al., “Polyethylene glycol (PEG) modified 99mTc-HMPAO-liposome for improving blood circulation and biodistribution: the effect of the extent of PEGylation,” Cancer Biotherapy and Radiopharmaceuticals, vol. 20, no. 6, pp. 620–628, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Mori, A. L. Klibanov, V. P. Torchilin, and L. Huang, “Influence of the steric barrier activity of amphipathic poly(ethyleneglycol) and ganglioside GM1 on the circulation time of liposomes and on the target binding of immunoliposomes in vivo,” FEBS Letters, vol. 284, no. 2, pp. 263–266, 1991. View at Publisher · View at Google Scholar · View at Scopus
  55. R. R. Sawant, R. M. Sawant, A. A. Kale, and V. P. Torchilin, “The architecture of ligand attachment to nanocarriers controls their specific interaction with target cells,” Journal of Drug Targeting, vol. 16, no. 7-8, pp. 596–600, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. W. C. Zamboni, S. Strychor, E. Joseph et al., “Plasma, tumor, and tissue disposition of STEALTH liposomal CKD-602 (S-CKD602) and nonliposomal CKD-602 in mice bearing A375 human melanoma xenografts,” Clinical Cancer Research, vol. 13, no. 23, pp. 7217–7223, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Yang, F. D. Cui, M. K. Choi et al., “Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation,” International Journal of Pharmaceutics, vol. 338, no. 1-2, pp. 317–326, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. J. I. Yokoe, S. Sakuragi, K. Yamamoto et al., “Albumin-conjugated PEG liposome enhances tumor distribution of liposomal doxorubicin in rats,” International Journal of Pharmaceutics, vol. 353, no. 1-2, pp. 28–34, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. K. Furumoto, J. I. Yokoe, K. I. Ogawara et al., “Effect of coupling of albumin onto surface of PEG liposome on its in vivo disposition,” International Journal of Pharmaceutics, vol. 329, no. 1-2, pp. 110–116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. K. Yoshino, K. Nakamura, Y. Terajima et al., “Comparative studies of irinotecan-loaded polyethylene glycol-modified liposomes prepared using different PEG-modification methods,” Biochimica et Biophysica Acta, vol. 1818, pp. 2901–2907, 2012. View at Publisher · View at Google Scholar
  61. K. Nakamura, K. Yamashita, Y. Itoh, K. Yoshino, S. Nozawa, and H. Kasukawa, “Comparative studies of polyethylene glycol-modified liposomes prepared using different PEG-modification methods,” Biochimica et Biophysica Acta, vol. 1818, pp. 2801–2807, 2012. View at Publisher · View at Google Scholar
  62. Z. Cao, L. Zhang, and S. Jiang, “Superhydrophilic zwitterionic polymers stabilize liposomes,” Langmuir, vol. 28, pp. 11625–11632, 2012. View at Publisher · View at Google Scholar
  63. K. J. Harrington, S. Mohammadtaghi, P. S. Uster et al., “Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes,” Clinical Cancer Research, vol. 7, no. 2, pp. 243–254, 2001. View at Google Scholar · View at Scopus
  64. S. D. Li and L. Huang, “Pharmacokinetics and biodistribution of nanoparticles,” Molecular Pharmaceutics, vol. 5, no. 4, pp. 496–504, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. R. B. Campbell, D. Fukumura, E. B. Brown et al., “Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors,” Cancer Research, vol. 62, no. 23, pp. 6831–6836, 2002. View at Google Scholar · View at Scopus
  66. T. S. Levchenko, R. Rammohan, A. N. Lukyanov, K. R. Whiteman, and V. P. Torchilin, “Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating,” International Journal of Pharmaceutics, vol. 240, no. 1-2, pp. 95–102, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. W. Zhao, S. Zhuang, and X. R. Qi, “Comparative study of the in vitro and in vivo characteristics of cationic and neutral liposomes,” International Journal of Nanomedicine, vol. 6, pp. 3087–3098, 2011. View at Google Scholar
  68. S. D. Li, S. Chono, and L. Huang, “Efficient oncogene silencing and metastasis inhibition via systemic delivery of siRNA,” Molecular Therapy, vol. 16, no. 5, pp. 942–946, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. E. T. M. Dams, P. Laverman, W. J. G. Oyen et al., “Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes,” Journal of Pharmacology and Experimental Therapeutics, vol. 292, no. 3, pp. 1071–1079, 2000. View at Google Scholar · View at Scopus
  70. P. Laverman, M. G. Carstens, O. C. Boerman et al., “Factors affecting the accelerated blood clearance of polyethylene glycol-liposomes upon repeated injection,” Journal of Pharmacology and Experimental Therapeutics, vol. 298, no. 2, pp. 607–612, 2001. View at Google Scholar · View at Scopus
  71. T. Ishida and H. Kiwada, “Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes,” International Journal of Pharmaceutics, vol. 354, no. 1-2, pp. 56–62, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. T. Ishida, M. Ichihara, X. Wang, and H. Kiwada, “Spleen plays an important role in the induction of accelerated blood clearance of PEGylated liposomes,” Journal of Controlled Release, vol. 115, no. 3, pp. 243–250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. X. Wang, T. Ishida, and H. Kiwada, “Anti-PEG IgM elicited by injection of liposomes is involved in the enhanced blood clearance of a subsequent dose of PEGylated liposomes,” Journal of Controlled Release, vol. 119, no. 2, pp. 236–244, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Gabizon, R. Chisin, S. Amselem et al., “Pharmacokinetic and imaging studies in patients receiving a formulation of liposome-associated adriamycin,” British Journal of Cancer, vol. 64, no. 6, pp. 1125–1132, 1991. View at Google Scholar · View at Scopus
  75. T. Ishida, S. Kashima, and H. Kiwada, “The contribution of phagocytic activity of liver macrophages to the accelerated blood clearance (ABC) phenomenon of PEGylated liposomes in rats,” Journal of Controlled Release, vol. 126, no. 2, pp. 162–165, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. T. Tagami, Y. Uehara, N. Moriyoshi, T. Ishida, and H. Kiwada, “Anti-PEG IgM production by siRNA encapsulated in a PEGylated lipid nanocarrier is dependent on the sequence of the siRNA,” Journal of Controlled Release, vol. 151, no. 2, pp. 149–154, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. T. Tagami, K. Nakamura, T. Shimizu, N. Yamazaki, T. Ishida, and H. Kiwada, “CpG motifs in pDNA-sequences increase anti-PEG IgM production induced by PEG-coated pDNA-lipoplexes,” Journal of Controlled Release, vol. 142, no. 2, pp. 160–166, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. T. Shimizu, M. Ichihara, Y. Yoshioka, T. Ishida, S. Nakagawa, and H. Kiwada, “Intravenous administration of polyethylene glycol-coated (PEGylated) proteins and PEGylated adenovirus elicits an anti-PEG immunoglobulin M response,” Biological & Pharmaceutical Bulletin, vol. 35, pp. 1336–1342, 2012. View at Publisher · View at Google Scholar
  79. T. Daemen, G. Hofstede, M. T. T. Kate, I. A. J. M. Bakker-Woudenberg, and G. L. Scherphof, “Liposomal doxorubicin-induced toxicity: depletion and impairment of phagocytic activity of liver macrophages,” International Journal of Cancer, vol. 61, no. 5, pp. 716–721, 1995. View at Publisher · View at Google Scholar · View at Scopus
  80. E. W. M. Van Etten, M. T. T. Kate, S. V. Snijders, and I. A. J. M. Bakker-Woudenberg, “Administration of liposomal agents and blood clearance capacity of the mononuclear phagocyte system,” Antimicrobial Agents and Chemotherapy, vol. 42, no. 7, pp. 1677–1681, 1998. View at Google Scholar · View at Scopus
  81. A. Gabizon, R. Isacson, O. Rosengarten, D. Tzemach, H. Shmeeda, and R. Sapir, “An open-label study to evaluate dose and cycle dependence of the pharmacokinetics of pegylated liposomal doxorubicin,” Cancer Chemotherapy and Pharmacology, vol. 61, no. 4, pp. 695–702, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. A. Gabizon, D. Tzemach, L. Mak, M. Bronstein, and A. T. Horowitz, “Dose dependency of pharmacokinetics and therapeutic efficacy of pegylated liposomal doxorubicin (DOXIL) in murine models,” Journal of Drug Targeting, vol. 10, no. 7, pp. 539–548, 2002. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Amantea, M. S. Newman, T. M. Sullivan, A. Forrest, and P. K. Working, “Relationship of dose intensity to the induction of palmar-plantar erythrodysesthia by pegylated liposomal doxorubicin in dogs,” Human and Experimental Toxicology, vol. 18, no. 1, pp. 17–26, 1999. View at Publisher · View at Google Scholar · View at Scopus
  84. A. S. Abu-Lila, N. E. Eldin, M. Ichihara, T. Ishida, and H. Kiwada, “Multiple administration of PEG-coated liposomal oxaliplatin enhances its therapeutic efficacy: a possible mechanism and the potential for clinical application,” International Journal of Pharmaceutics, vol. 438, no. 1-2, pp. 176–183, 2012. View at Publisher · View at Google Scholar
  85. C. Li, J. Cao, Y. Wang et al., “Accelerated blood clearance of pegylated liposomal topotecan: influence of polyethylene glycol grafting density and animal species,” Journal of Pharmaceutical Sciences, vol. 101, pp. 3864–3876, 2012. View at Publisher · View at Google Scholar
  86. T. Suzuki, M. Ichihara, K. Hyodo et al., “Accelerated blood clearance of PEGylated liposomes containing doxorubicin upon repeated administration to dogs,” International Journal of Pharmaceutics, vol. 436, pp. 636–643, 2012. View at Google Scholar
  87. N. M. La-Beck, B. A. Zamboni, A. Gabizon et al., “Factors affecting the pharmacokinetics of pegylated liposomal doxorubicin in patients,” Cancer Chemother Pharmacol, vol. 69, pp. 43–50, 2012. View at Google Scholar
  88. J. Szebeni, F. Muggia, A. Gabizon, and Y. Barenholz, “Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: prediction and prevention,” Advanced Drug Delivery Reviews, vol. 63, pp. 1020–1030, 2011. View at Google Scholar
  89. J. Szebeni and S. M. Moghimi, “Liposome triggering of innate immune responses: a perspective on benefits and adverse reactions,” Journal of Liposome Research, vol. 19, no. 2, pp. 85–90, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. S. M. Moghimi, I. Hamad, T. L. Andresen, K. Jørgensen, and J. Szebeni, “Methylation of the phosphate oxygen moiety of phospholipid- methoxy(polyethylene glycol) conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production,” FASEB Journal, vol. 20, no. 14, pp. 2591–2593, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. I. K. Kwon, S. C. Lee, B. Han, and K. Park, “Analysis on the current status of targeted drug delivery to tumors,” Journal of Controlled Release, vol. 164, no. 2, pp. 108–114, 2012. View at Publisher · View at Google Scholar
  92. C. H. Heldin, K. Rubin, K. Pietras, and A. Östman, “High interstitial fluid pressure—an obstacle in cancer therapy,” Nature Reviews Cancer, vol. 4, no. 10, pp. 806–813, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. A. J. Primeau, A. Rendon, D. Hedley, L. Lilge, and I. F. Tannock, “The distribution of the anticancer drug doxorubicin in relation to blood vessels in solid tumors,” Clinical Cancer Research, vol. 11, no. 24, pp. 8782–8788, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. F. Yuan, M. Leunig, S. K. Huang, D. A. Berk, D. Papahadjopoulos, and R. K. Jain, “Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft,” Cancer Research, vol. 54, no. 13, pp. 3352–3356, 1994. View at Google Scholar · View at Scopus
  95. M. J. Parr, D. Masin, P. R. Cullis, and M. B. Bally, “Accumulation of liposomal lipid and encapsulated doxorubicin in murine Lewis Lung carcinoma: the lack of beneficial effects by coating liposomes with poly(ethylene glycol),” Journal of Pharmacology and Experimental Therapeutics, vol. 280, no. 3, pp. 1319–1327, 1997. View at Google Scholar · View at Scopus
  96. T. M. Allen, D. R. Mumbengegwi, and G. J. R. Charrois, “Anti-CD19-targeted liposomal doxorubicin improves the therapeutic efficacy in murine B-cell lymphoma and ameliorates the toxicity of liposomes with varying drug release rates,” Clinical Cancer Research, vol. 11, no. 9, pp. 3567–3573, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. R. Wang, R. Xiao, Z. Zeng, L. Xu, and J. Wang, “Application of poly(ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE) block copolymers and their derivatives as nanomaterials in drug delivery,” International Journal of Nanomedicine, vol. 7, pp. 4185–4198, 2012. View at Google Scholar
  98. D. B. Kirpotin, D. C. Drummond, Y. Shao et al., “Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models,” Cancer Research, vol. 66, no. 13, pp. 6732–6740, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. D. W. Bartlett, H. Su, I. J. Hildebrandt, W. A. Weber, and M. E. Davis, “Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 39, pp. 15549–15554, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. K. M. Laginha, E. H. Moase, N. Yu, A. Huang, and T. M. Allen, “Bioavailability and therapeutic efficacy of HER2 scFv-targeted liposomal doxorubicin in a murine model of HER2-overexpressing breast cancer,” Journal of Drug Targeting, vol. 16, no. 7-8, pp. 605–610, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. P. Sapra, E. H. Moase, J. Ma, and T. M. Allen, “Improved therapeutic responses in a xenograft model of human B lymphoma (Namalwa) for liposomal vincristine versus liposomal doxorubicin targeted via anti-CD19 IgG2a or Fab′ fragments,” Clinical Cancer Research, vol. 10, no. 3, pp. 1100–1111, 2004. View at Publisher · View at Google Scholar · View at Scopus
  102. T. A. Elbayoumi and V. P. Torchilin, “tumor-targeted nanomedicines: enhanced antitumor efficacy in vivo of doxorubicin-loaded, long-circulating liposomes modified with cancer-specific monoclonal antibody,” Clinical Cancer Research, vol. 15, no. 6, pp. 1973–1980, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. X. Li, L. Ding, Y. Xu, Y. Wang, and Q. Ping, “Targeted delivery of doxorubicin using stealth liposomes modified with transferrin,” International Journal of Pharmaceutics, vol. 373, no. 1-2, pp. 116–123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. A. B. Madhankumar, B. Slagle-Webb, X. Wang et al., “Efficacy of interleukin-13 receptor-targeted liposomal doxorubicin in the intracranial brain tumor model,” Molecular Cancer Therapeutics, vol. 8, no. 3, pp. 648–654, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. Y. Iwase and Y. Maitani, “Octreotide-targeted liposomes loaded with CPT-11 enhanced cytotoxicity for the treatment of medullary thyroid carcinoma,” Molecular Pharmaceutics, vol. 8, no. 2, pp. 330–337, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. J. Zhang, W. Jin, X. Wang, J. Wang, X. Zhang, and Q. Zhang, “A novel octreotide modified lipid vesicle improved the anticancer efficacy of doxorubicin in somatostatin receptor 2 positive tumor models,” Molecular Pharmaceutics, vol. 7, no. 4, pp. 1159–1168, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. M. Saad, O. B. Garbuzenko, E. Ber et al., “Receptor targeted polymers, dendrimers, liposomes: which nanocarrier is the most efficient for tumor-specific treatment and imaging?” Journal of Controlled Release, vol. 130, no. 2, pp. 107–114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. F. Danhier, A. L. Breton, and V. Preat, “RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis,” Molecular Pharmaceutics, vol. 9, no. 11, pp. 2961–2973, 2012. View at Publisher · View at Google Scholar
  109. H. Zhao, J. C. Wang, Q. S. Sun, C. L. Luo, and Q. Zhang, “RGD-based strategies for improving antitumor activity of paclitaxel-loaded liposomes in nude mice xenografted with human ovarian cancer,” Journal of Drug Targeting, vol. 17, no. 1, pp. 10–18, 2009. View at Google Scholar · View at Scopus
  110. X. B. Xiong, Y. Huang, W. L. Lu et al., “Intracellular delivery of doxorubicin with RGD-modified sterically stabilized liposomes for an improved antitumor efficacy: in vitro and in vivo,” Journal of Pharmaceutical Sciences, vol. 94, no. 8, pp. 1782–1793, 2005. View at Publisher · View at Google Scholar · View at Scopus
  111. K. Riviere, Z. Huang, K. Jerger, N. MacAraeg, and F. C. Szoka, “Antitumor effect of folate-targeted liposomal doxorubicin in KB tumor-bearing mice after intravenous administration,” Journal of Drug Targeting, vol. 19, no. 1, pp. 14–24, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. S. R. Paliwal, R. Paliwal, N. Mishra, A. Mehta, and S. P. Vyas, “A novel cancer targeting approach based on estrone anchored stealth liposome for site-specific breast cancer therapy,” Current Cancer Drug Targets, vol. 10, no. 3, pp. 343–353, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. S. D. Li, S. Chono, and L. Huang, “Efficient gene silencing in metastatic tumor by siRNA formulated in surface-modified nanoparticles,” Journal of Controlled Release, vol. 126, no. 1, pp. 77–84, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. J. S. Thomann, B. Heurtault, S. Weidner et al., “Antitumor activity of liposomal ErbB2/HER2 epitope peptide-based vaccine constructs incorporating TLR agonists and mannose receptor targeting,” Biomaterials, vol. 32, no. 20, pp. 4574–4583, 2011. View at Publisher · View at Google Scholar · View at Scopus
  115. Y. Ikehara, N. Shiuchi, S. Kabata-Ikehara et al., “Effective induction of anti-tumor immune responses with oligomannose-coated liposome targeting to intraperitoneal phagocytic cells,” Cancer Letters, vol. 260, no. 1-2, pp. 137–145, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. X. Zhou, M. Zhang, B. Yung et al., “Lactosylated liposomes for targeted delivery of doxorubicin to hepatocellular carcinoma,” International Journal of Nanomedicine, vol. 7, pp. 5465–5474, 2012. View at Google Scholar
  117. G. Blume, G. Cevc, M. D. J. A. Crommelin, I. A. J. M. Bakker-Woudenberg, C. Kluft, and G. Storm, “Specific targeting with poly(ethylene glycol)-modified liposomes: coupling of homing devices to the ends of the polymeric chains combines effective target binding with long circulation times,” Biochimica et Biophysica Acta, vol. 1149, no. 1, pp. 180–184, 1993. View at Publisher · View at Google Scholar · View at Scopus
  118. A. Gabizon, A. T. Horowitz, D. Goren et al., “Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies,” Bioconjugate Chemistry, vol. 10, no. 2, pp. 289–298, 1999. View at Publisher · View at Google Scholar · View at Scopus
  119. K. Loomis, B. Smith, Y. Feng et al., “Specific targeting to B cells by lipid-based nanoparticles conjugated with a novel CD22-ScFv,” Experimental and Molecular Pathology, vol. 88, no. 2, pp. 238–249, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. H. Hatakeyama, H. Akita, E. Ishida et al., “tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes,” International Journal of Pharmaceutics, vol. 342, no. 1-2, pp. 194–200, 2007. View at Publisher · View at Google Scholar · View at Scopus
  121. P. Simard and J. C. Leroux, “In vivo evaluation of pH-sensitive polymer-based immunoliposomes targeting the CD33 antigen,” Molecular Pharmaceutics, vol. 7, no. 4, pp. 1098–1107, 2010. View at Publisher · View at Google Scholar · View at Scopus
  122. A. Yamada, Y. Taniguchi, K. Kawano, T. Honda, Y. Hattori, and Y. Maitani, “Design of folate-linked liposomal doxorubicin to its antitumor effect in mice,” Clinical Cancer Research, vol. 14, no. 24, pp. 8161–8168, 2008. View at Publisher · View at Google Scholar · View at Scopus
  123. K. H. Chuang, H. E. Wang, F. M. Chen et al., “Endocytosis of PEGylated agents enhances cancer imaging and anticancer efficacy,” Molecular Cancer Therapeutics, vol. 9, pp. 1903–1912, 2010. View at Publisher · View at Google Scholar
  124. N. Kamaly, Z. Xiao, P. M. Valencia, A. F. Radovic-Moreno, and O. C. Farokhzad, “Targeted polymeric therapeutic nanoparticles: design, development and clinical translation,” Chemical Society Reviews, vol. 41, pp. 2971–3010, 2012. View at Publisher · View at Google Scholar
  125. B. Frisch, F. S. Hassane, and F. Schuber, “Conjugation of ligands to the surface of preformed liposomes by click chemistry,” Methods in Molecular Biology, vol. 605, pp. 267–277, 2010. View at Publisher · View at Google Scholar · View at Scopus
  126. F. Schuber, F. S. Hassane, and B. Frisch, “Coupling of peptides to the surface of liposomes-Application to liposome-based synthetic vaccines,” in Liposome Technology, G. Gregoriadis, Ed., pp. 111–130, Informa Healthcare, New York, NY, USA, 3rd edition, 2007. View at Google Scholar
  127. A. S. Manjappa, K. R. Chaudhari, M. P. Venkataraju et al., “Antibody derivatization and conjugation strategies: application in preparation of stealth immunoliposome to target chemotherapeutics to tumor,” Journal of Controlled Release, vol. 150, no. 1, pp. 2–22, 2011. View at Publisher · View at Google Scholar · View at Scopus
  128. W. Tai, R. Mahato, and K. Cheng, “The role of HER2 in cancer therapy and targeted drug delivery,” Journal of Controlled Release, vol. 146, no. 3, pp. 264–275, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. M. F. Press, C. Cordon-Cardo, and D. J. Slamon, “Expression of the HER-2/neu proto-oncogene in normal human adult and fetal tissues,” Oncogene, vol. 5, no. 7, pp. 953–962, 1990. View at Google Scholar · View at Scopus
  130. S. Erdogan, Z. O. Medarova, A. Roby, A. Moore, and V. P. Torchilin, “Enhanced tumor MR imaging with gadolinium-loaded polychelating polymer-containing tumor-targeted liposomes,” Journal of Magnetic Resonance Imaging, vol. 27, no. 3, pp. 574–580, 2008. View at Publisher · View at Google Scholar · View at Scopus
  131. P. Sapra and T. M. Allen, “Ligand-targeted liposomal anticancer drugs,” Progress in Lipid Research, vol. 42, no. 5, pp. 439–462, 2003. View at Publisher · View at Google Scholar · View at Scopus
  132. X. Qi, Z. Chu, Y. Y. Mahller, K. F. Stringer, D. P. Witte, and T. P. Cripe, “Cancer-selective targeting and cytotoxicity by liposomal-coupled lysosomal saposin C protein,” Clinical Cancer Research, vol. 15, no. 18, pp. 5840–5851, 2009. View at Publisher · View at Google Scholar · View at Scopus
  133. A. M. Vaccaro, M. Motta, M. Tatti et al., “Saposin C mutations in Gaucher disease patients resulting in lysosomal lipid accumulation, saposin C deficiency, but normal prosaposin processing and sorting,” Human molecular genetics, vol. 19, no. 15, pp. 2987–2997, 2010. View at Google Scholar · View at Scopus
  134. X. Qi and G. A. Grabowski, “Differential membrane interactions of saposins A and C: implications for the functional specificity,” Journal of Biological Chemistry, vol. 276, no. 29, pp. 27010–27017, 2001. View at Publisher · View at Google Scholar · View at Scopus
  135. T. R. Daniels, T. Delgado, J. A. Rodriguez, G. Helguera, and M. L. Penichet, “The transferrin receptor part I: biology and targeting with cytotoxic antibodies for the treatment of cancer,” Clinical Immunology, vol. 121, no. 2, pp. 144–158, 2006. View at Publisher · View at Google Scholar · View at Scopus
  136. T. R. Daniels, T. Delgado, G. Helguera, and M. L. Penichet, “The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells,” Clinical Immunology, vol. 121, no. 2, pp. 159–176, 2006. View at Publisher · View at Google Scholar · View at Scopus
  137. T. R. Pearce, K. Shroff, and E. Kokkoli, “Peptide targeted lipid nanoparticles for anticancer drug delivery,” Advanced Materials, vol. 24, pp. 3803–3822, 2012. View at Publisher · View at Google Scholar
  138. K. Wang, M. H. Na, A. S. Hoffman et al., “In situ dose amplification by apoptosis-targeted drug delivery,” Journal of Controlled Release, vol. 154, pp. 214–217, 2011. View at Publisher · View at Google Scholar · View at Scopus
  139. L. C. Sun and D. H. Coy, “Somatostatin receptor-targeted anti-cancer therapy,” Current Drug Delivery, vol. 8, no. 1, pp. 2–10, 2011. View at Publisher · View at Google Scholar · View at Scopus
  140. Z. Han, A. Fu, H. Wang et al., “Noninvasive assessment of cancer response to therapy,” Nature Medicine, vol. 14, no. 3, pp. 343–349, 2008. View at Publisher · View at Google Scholar · View at Scopus
  141. A. Lowery, H. Onishko, D. E. Hallahan, and Z. Han, “tumor-targeted delivery of liposome-encapsulated doxorubicin by use of a peptide that selectively binds to irradiated tumors,” Journal of Controlled Release, vol. 150, no. 1, pp. 117–124, 2011. View at Publisher · View at Google Scholar · View at Scopus
  142. X. He, M. H. Na, J. S. Kim et al., “A novel peptide probe for imaging and targeted delivery of liposomal doxorubicin to lung tumor,” Molecular Pharmaceutics, vol. 8, no. 2, pp. 430–438, 2011. View at Publisher · View at Google Scholar · View at Scopus
  143. T. Wang, G. G. D'souza, D. Bedi et al., “Enhanced binding and killing of target tumor cells by drug-loaded liposomes modified with tumor-specific phage fusion coat protein,” Nanomedicine, vol. 5, no. 4, pp. 563–574, 2010. View at Publisher · View at Google Scholar · View at Scopus
  144. T. Wang, N. Kulkarni, D. Bedi et al., “In vitro optimization of liposomal nanocarriers prepared from breast tumor cell specific phage fusion protein,” Journal of Drug Targeting, vol. 19, pp. 597–605, 2011. View at Publisher · View at Google Scholar
  145. S. S. Dharap, Y. Wang, P. Chandna et al., “tumor-specific targeting of an anticancer drug delivery system by LHRH peptide,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 36, pp. 12962–12967, 2005. View at Publisher · View at Google Scholar · View at Scopus
  146. K. Kessenbrock, V. Plaks, and Z. Werb, “Matrix metalloproteinases: regulators of the tumor microenvironment,” Cell, vol. 141, no. 1, pp. 52–67, 2010. View at Publisher · View at Google Scholar · View at Scopus
  147. P. C. Brooks, S. Silletti, T. L. Von Schalscha, M. Friedlander, and D. A. Cheresh, “Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity,” Cell, vol. 92, no. 3, pp. 391–400, 1998. View at Publisher · View at Google Scholar · View at Scopus
  148. E. Koivunen, W. Arap, H. Valtanen et al., “tumor targeting with a selective gelatinase inhibitor,” Nature Biotechnology, vol. 17, no. 8, pp. 768–774, 1999. View at Publisher · View at Google Scholar · View at Scopus
  149. L. E. Kelemen, “The role of folate receptor α in cancer development, progression and treatment: cause, consequence or innocent bystander?” International Journal of Cancer, vol. 119, no. 2, pp. 243–250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  150. P. S. Low, W. A. Henne, and D. D. Doorneweerd, “Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases,” Accounts of Chemical Research, vol. 41, no. 1, pp. 120–129, 2008. View at Publisher · View at Google Scholar · View at Scopus
  151. S. Lee, J. Kim, G. Shim et al., “Tetraiodothyroacetic acid-tagged liposomes for enhanced delivery of anticancer drug to tumor tissue via integrin receptor,” Journal of Controlled Release, vol. 164, no. 2, pp. 213–220, 2012. View at Publisher · View at Google Scholar
  152. Y. Qin, Q. G. Song, Z. R. Zhang et al., “Ovarian tumor targeting of docetaxel-loaded liposomes mediated by luteinizing hormone-releasing hormone analogues: in vivo distribution in nude mice,” Arzneimittel-Forschung/Drug Research, vol. 58, no. 10, pp. 529–534, 2008. View at Google Scholar · View at Scopus
  153. T. Terada, M. Mizobata, S. Kawakami, Y. Yabe, F. Yamashita, and M. Hashida, “Basic fibroblast growth factor-binding peptide as a novel targeting ligand of drug carrier to tumor cells,” Journal of Drug Targeting, vol. 14, no. 8, pp. 536–545, 2006. View at Publisher · View at Google Scholar · View at Scopus
  154. X. Chen, X. Wang, Y. Wang et al., “Improved tumor-targeting drug delivery and therapeutic efficacy by cationic liposome modified with truncated bFGF peptide,” Journal of Controlled Release, vol. 145, no. 1, pp. 17–25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  155. Y. Tan, M. Whitmore, S. Li, P. Frederik, and L. Huang, “LPD nanoparticles–novel nonviral vector for efficient gene delivery,” Methods in molecular medicine, vol. 69, pp. 73–81, 2002. View at Google Scholar · View at Scopus
  156. B. J. Vilner, C. S. John, and W. D. Bowen, “Sigma-1 and sigma-2 receptors are expressed in a wide variety of human and rodent tumor cell lines,” Cancer Research, vol. 55, no. 2, pp. 408–413, 1995. View at Google Scholar · View at Scopus
  157. R. Banerjee, P. Tyagi, S. Li, and L. Huang, “Anisamide-targeted stealth liposomes: a potent carrier for targeting doxorubicin to human prostate cancer cells,” International Journal of Cancer, vol. 112, no. 4, pp. 693–700, 2004. View at Publisher · View at Google Scholar · View at Scopus
  158. D. Spitzer, P. O. Simon Jr., H. Kashiwagi et al., “Use of multifunctional sigma-2 receptor ligand conjugates to trigger cancer-selective cell death signaling,” Cancer Research, vol. 72, pp. 201–209, 2012. View at Google Scholar
  159. P. Boyle and B. Levin, Eds., World Cancer Report, International Agency for Research on Cancer, Lyon, France, 2008.
  160. R. Paolinelli, M. Corada, F. Orsenigo, and E. Dejana, “The molecular basis of the blood brain barrier differentiation and maintenance. Is it still a mystery?” Pharmacological Research, vol. 63, no. 3, pp. 165–171, 2011. View at Publisher · View at Google Scholar · View at Scopus
  161. W. Debinski, B. Slagle, D. M. Gibo, S. K. Powers, and G. Y. Gillespie, “Expression of a restrictive receptor for interleukin 13 is associated with glial transformation,” Journal of Neuro-Oncology, vol. 48, no. 2, pp. 103–111, 2000. View at Publisher · View at Google Scholar · View at Scopus
  162. J. Du, W. L. Lu, X. Ying et al., “Dual-targeting topotecan liposomes modified with tamoxifen and wheat germ agglutinin significantly improve drug transport across the blood-brain barrier and survival of brain tumor-bearing animals,” Molecular Pharmaceutics, vol. 6, no. 3, pp. 905–917, 2009. View at Publisher · View at Google Scholar · View at Scopus
  163. X. Ying, H. Wen, H. J. Yao et al., “Pharmacokinetics and tissue distribution of dual-targeting daunorubicin liposomes in mice,” Pharmacology, vol. 87, no. 1-2, pp. 105–114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  164. W. Gong, Z. Wang, N. Liu et al., “Improving efficiency of adriamycin crossing blood brain barrier by combination of thermosensitive liposomes and hyperthermia,” Biological and Pharmaceutical Bulletin, vol. 34, no. 7, pp. 1058–1064, 2011. View at Publisher · View at Google Scholar · View at Scopus
  165. F. Y. Yang and P. Y. Lee, “Efficiency of drug delivery enhanced by acoustic pressure during blood-brain barrier disruption induced by focused ultrasound,” International Journal of Nanomedicine, vol. 7, pp. 2573–2582, 2012. View at Google Scholar
  166. F. Y. Yang, H. E. Wang, R. S. Liu et al., “Pharmacokinetic analysis of (111)in-labeled liposomal Doxorubicin in murine glioblastoma after blood-brain barrier disruption by focused ultrasound,” PLoS One, vol. 7, article e45468, 2012. View at Google Scholar
  167. G. Bergers and L. E. Benjamin, “tumorigenesis and the angiogenic switch,” Nature Reviews Cancer, vol. 3, no. 6, pp. 401–410, 2003. View at Publisher · View at Google Scholar · View at Scopus
  168. S. M. Weis and D. A. Cheresh, “tumor angiogenesis: molecular pathways and therapeutic targets,” Nature Medicine, vol. 17, pp. 1359–1370, 2011. View at Publisher · View at Google Scholar
  169. Q. Chen, A. Krol, A. Wright, D. Needham, M. W. Dewhirst, and F. Yuan, “tumor microvascular permeability is a key determinant for antivascular effects of doxorubicin encapsulated in a temperature sensitive liposome,” International Journal of Hyperthermia, vol. 24, no. 6, pp. 475–482, 2008. View at Publisher · View at Google Scholar · View at Scopus
  170. K. I. Ogawara, K. Un, K. Minato, K. I. Tanaka, K. Higaki, and T. Kimura, “Determinants for in vivo anti-tumor effects of PEG liposomal doxorubicin: importance of vascular permeability within tumors,” International Journal of Pharmaceutics, vol. 359, no. 1-2, pp. 234–240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  171. A. S. Abu Lila, H. Matsumoto, Y. Doi, H. Nakamura, T. Ishida, and H. Kiwada, “tumor-type-dependent vascular permeability constitutes a potential impediment to the therapeutic efficacy of liposomal oxaliplatin,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 81, pp. 524–531, 2012. View at Publisher · View at Google Scholar
  172. R. B. Campbell, B. Ying, G. M. Kuesters, and R. Hemphill, “Fighting cancer: from the bench to bedside using second generation cationic liposomal therapeutics,” Journal of Pharmaceutical Sciences, vol. 98, no. 2, pp. 411–429, 2009. View at Publisher · View at Google Scholar · View at Scopus
  173. D. C. Litzinger, A. M. J. Buiting, N. Van Rooijen, and L. Huang, “Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes,” Biochimica et Biophysica Acta, vol. 1190, no. 1, pp. 99–107, 1994. View at Publisher · View at Google Scholar · View at Scopus
  174. D. C. Drummond, C. O. Noble, Z. Guo, K. Hong, J. W. Park, and D. B. Kirpotin, “Development of a highly active nanoliposomal irinotecan using a novel intraliposomal stabilization strategy,” Cancer Research, vol. 66, no. 6, pp. 3271–3277, 2006. View at Publisher · View at Google Scholar · View at Scopus
  175. S. Taurin, H. Nehoff, and K. Greish, “Anticancer nanomedicine and tumor vascular permeability, where is the missing link?” Journal of Controlled Release, vol. 164, no. 3, pp. 265–275, 2012. View at Publisher · View at Google Scholar
  176. R. Carlisle, L. W. Seymour, and C. C. Coussios, “Targeting of liposomes via PSGL1 for enhanced tumor accumulation,” Pharmaceutical Research, vol. 30, no. 2, pp. 352–361, 2012. View at Publisher · View at Google Scholar
  177. L. Vellon, J. A. Menendez, and R. Lupu, “αvβ3 integrin regulates heregulin (HRG)-induced cell proliferation and survival in breast cancer,” Oncogene, vol. 24, no. 23, pp. 3759–3773, 2005. View at Publisher · View at Google Scholar · View at Scopus
  178. S. Meng, B. Su, W. Li et al., “Integrin-targeted paclitaxel nanoliposomes for tumor therapy,” Medical Oncology, vol. 28, pp. 1180–1187, 2011. View at Publisher · View at Google Scholar
  179. A. Accardo, G. Salsano, A. Morisco et al., “Peptide-modified liposomes for selective targeting of bombesin receptors overexpressed by cancer cells: a potential theranostic agent,” International Journal of Nanomedicine, vol. 7, pp. 2007–2017, 2012. View at Google Scholar
  180. F. Doñate, G. C. Parry, Y. Shaked et al., “Pharmacology of the novel antiangiogenic peptide ATN-161 (Ac-PHSCN-NH 2): observation of a U-shaped dose-response curve in several preclinical models of angiogenesis and tumor growth,” Clinical Cancer Research, vol. 14, no. 7, pp. 2137–2144, 2008. View at Publisher · View at Google Scholar · View at Scopus
  181. W. Dai, T. Yang, Y. Wang et al., “Peptide PHSCNK as an integrin alpha(5)beta(1) antagonist targets stealth liposomes to integrin-overexpressing melanoma,” Nanomedicine, vol. 8, pp. 1152–1161, 2012. View at Publisher · View at Google Scholar
  182. F. Pastorino, D. Di Paolo, F. Piccardi et al., “Enhanced antitumor efficacy of clinical-grade vasculature-targeted liposomal doxorubicin,” Clinical Cancer Research, vol. 14, no. 22, pp. 7320–7329, 2008. View at Publisher · View at Google Scholar · View at Scopus
  183. K. Takara, H. Hatakeyama, G. Kibria, N. Ohga, K. Hida, and H. Harashima, “Size-controlled, dual-ligand modified liposomes that target the tumor vasculature show promise for use in drug-resistant cancer therapy,” Journal of Controlled Release, vol. 162, pp. 225–232, 2012. View at Publisher · View at Google Scholar
  184. G. Colombo, F. Curnis, G. M. S. De Mori et al., “Structure-activity relationships of linear and cyclic peptides containing the NGR tumor-homing motif,” Journal of Biological Chemistry, vol. 277, no. 49, pp. 47891–47897, 2002. View at Publisher · View at Google Scholar · View at Scopus
  185. G. Thurston, J. W. McLean, M. Rizen et al., “Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice,” Journal of Clinical Investigation, vol. 101, pp. 1401–1413, 1998. View at Publisher · View at Google Scholar
  186. S. Ran and P. E. Thorpe, “Phosphatidylserine is a marker of tumor vasculature and a potential target for cancer imaging and therapy,” International Journal of Radiation Oncology Biology Physics, vol. 54, no. 5, pp. 1479–1484, 2002. View at Publisher · View at Google Scholar · View at Scopus
  187. A. S. Abu Lila, S. Kizuki, Y. Doi, T. Suzuki, T. Ishida, and H. Kiwada, “Oxaliplatin encapsulated in PEG-coated cationic liposomes induces significant tumor growth suppression via a dual-targeting approach in a murine solid tumor model,” Journal of Controlled Release, vol. 137, no. 1, pp. 8–14, 2009. View at Publisher · View at Google Scholar · View at Scopus
  188. T. Tagami, T. Suzuki, M. Matsunaga et al., “Anti-angiogenic therapy via cationic liposome-mediated systemic siRNA delivery,” International Journal of Pharmaceutics, vol. 422, pp. 280–289, 2012. View at Publisher · View at Google Scholar
  189. T. Asai, Y. Suzuki, S. Matsushita et al., “Disappearance of the angiogenic potential of endothelial cells caused by Argonaute2 knockdown,” Biochemical and Biophysical Research Communications, vol. 368, no. 2, pp. 243–248, 2008. View at Publisher · View at Google Scholar · View at Scopus
  190. M. E. Eichhorn, S. Becker, S. Strieth et al., “Paclitaxel encapsulated in cationic lipid complexes (MBT-0206) impairs functional tumor vascular properties as detected by dynamic contrast enhanced magnetic resonance imaging,” Cancer Biology and Therapy, vol. 5, no. 1, pp. 89–96, 2006. View at Google Scholar · View at Scopus
  191. M. Schmitt-Sody, S. Strieth, S. Krasnici et al., “Neovascular targeting therapy: paclitaxel encapsulated in cationic liposomes improves antitumoral efficacy,” Clinical Cancer Research, vol. 9, no. 6, pp. 2335–2341, 2003. View at Google Scholar · View at Scopus
  192. C. Bode, L. Trojan, C. Weiss et al., “Paclitaxel encapsulated in cationic liposomes: a new option for neovascular targeting for the treatment of prostate cancer,” Oncology Reports, vol. 22, no. 2, pp. 321–326, 2009. View at Publisher · View at Google Scholar · View at Scopus
  193. A. P. Mann, R. C. Bhavane, A. Somasunderam et al., “Thioaptamer conjugated liposomes for tumor vasculature targeting,” Oncotarget, vol. 2, pp. 298–304, 2011. View at Google Scholar
  194. J. Hamzah, J. G. Altin, T. Herringson et al., “Targeted liposomal delivery of TLR9 ligands activates spontaneous antitumor immunity in an autochthonous cancer model,” Journal of Immunology, vol. 183, no. 2, pp. 1091–1098, 2009. View at Publisher · View at Google Scholar · View at Scopus
  195. T. P. Herringson and J. G. Altin, “Increasing the antitumor efficacy of doxorubicin-loaded liposomes with peptides anchored via a chelator lipid,” Journal of Drug Targeting, vol. 19, pp. 681–689, 2011. View at Publisher · View at Google Scholar
  196. D. K. Chang, C. Y. Chiu, S. Y. Kuo et al., “Antiangiogenic targeting liposomes increase therapeutic efficacy for solid tumors,” Journal of Biological Chemistry, vol. 284, no. 19, pp. 12905–12916, 2009. View at Publisher · View at Google Scholar · View at Scopus
  197. S. Marchiò, J. Lahdenranta, R. O. Schlingemann et al., “Aminopeptidase A is a functional target in angiogenic blood vessels,” Cancer Cell, vol. 5, no. 2, pp. 151–162, 2004. View at Publisher · View at Google Scholar · View at Scopus
  198. M. Loi, S. Marchiò, P. Becherini et al., “Combined targeting of perivascular and endothelial tumor cells enhances anti-tumor efficacy of liposomal chemotherapy in neuroblastoma,” Journal of Controlled Release, vol. 145, no. 1, pp. 66–73, 2010. View at Publisher · View at Google Scholar · View at Scopus
  199. J. E. Gershenwald and I. J. Fidler, “Cancer: targeting lymphatic metastasis,” Science, vol. 296, no. 5574, pp. 1811–1812, 2002. View at Publisher · View at Google Scholar · View at Scopus
  200. A. J. Cochran, R. R. Huang, J. Lee, E. Itakura, S. P. L. Leong, and R. Essner, “Tumour-induced immune modulation of sentinel lymph nodes,” Nature Reviews Immunology, vol. 6, no. 11, pp. 659–670, 2006. View at Google Scholar · View at Scopus
  201. P. Laakkonen, M. E. Åkerman, H. Biliran et al., “Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 25, pp. 9381–9386, 2004. View at Publisher · View at Google Scholar · View at Scopus
  202. P. Laakkonen, K. Porkka, J. A. Hoffman, and E. Ruoslahti, “A tumor-homing peptide with a targeting specificity related to lymphatic vessels,” Nature Medicine, vol. 8, no. 7, pp. 751–755, 2002. View at Publisher · View at Google Scholar · View at Scopus
  203. Z. Yan, C. Zhan, Z. Wen et al., “LyP-1-conjugated doxorubicin-loaded liposomes suppress lymphatic metastasis by inhibiting lymph node metastases and destroying tumor lymphatics2011,” Nanotechnology, vol. 22, no. 41, article 415103. View at Publisher · View at Google Scholar
  204. Z. Yan, F. Wang, Z. Wen et al., “LyP-1-conjugated PEGylated liposomes: a carrier system for targeted therapy of lymphatic metastatic tumor,” Journal of Controlled Release, vol. 157, pp. 118–125, 2012. View at Publisher · View at Google Scholar
  205. T. P. Herringson and J. G. Altin, “Effective tumor targeting and enhanced anti-tumor effect of liposomes engrafted with peptides specific for tumor lymphatics and vasculature,” International Journal of Pharmaceutics, vol. 411, no. 1-2, pp. 206–214, 2011. View at Publisher · View at Google Scholar · View at Scopus
  206. Y. Murase, T. Asai, Y. Katanasaka et al., “A novel DDS strategy, “dual-targeting”, and its application for antineovascular therapy,” Cancer Letters, vol. 287, no. 2, pp. 165–171, 2010. View at Publisher · View at Google Scholar · View at Scopus
  207. S. Meng, B. Su, W. Li et al., “Enhanced antitumor effect of novel dual-targeted paclitaxel liposomes,” Nanotechnology, vol. 21, no. 41, Article ID 415103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  208. S. Valastyan and R. A. Weinberg, “tumor metastasis: molecular insights and evolving paradigms,” Cell, vol. 147, pp. 275–292, 2011. View at Publisher · View at Google Scholar
  209. L. Borsig, R. Wong, J. Feramisco, D. R. Nadeau, N. M. Varki, and A. Varki, “Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 6, pp. 3352–3357, 2001. View at Publisher · View at Google Scholar · View at Scopus
  210. D. Buergy, F. Wenz, C. Groden, and M. A. Brockmann, “tumor-platelet interaction in solid tumors,” International Journal of Cancer, vol. 130, pp. 2747–2760, 2012. View at Publisher · View at Google Scholar
  211. J. Wenzel, R. Zeisig, and I. Fichtner, “Inhibition of breast cancer metastasis by dual liposomes to disturb complex formation,” International Journal of Pharmaceutics, vol. 370, no. 1-2, pp. 121–128, 2009. View at Publisher · View at Google Scholar · View at Scopus
  212. W. Yang, D. Luo, S. Wang et al., “TMTP1, a novel tumor-homing peptide specifically argeting metastasis,” Clinical Cancer Research, vol. 14, no. 17, pp. 5494–5502, 2008. View at Publisher · View at Google Scholar · View at Scopus
  213. M. Zigler, T. Kamiya, E. C. Brantley, G. J. Villares, and M. Bar-Eli, “PAR-1 and thrombin: the ties that bind the microenvironment to melanoma metastasis,” Cancer Research, vol. 71, pp. 6561–6566, 2011. View at Publisher · View at Google Scholar
  214. G. J. Villares, M. Zigler, H. Wang et al., “Targeting melanoma growth and metastasis with systemic delivery of liposome-incorporated protease-activated receptor-1 small interfering RNA,” Cancer Research, vol. 68, no. 21, pp. 9078–9086, 2008. View at Publisher · View at Google Scholar · View at Scopus
  215. T. R. Petersen, N. Dickgreber, and I. F. Hermans, “tumor antigen presentation by dendritic cells,” Critical Reviews in Immunology, vol. 30, no. 4, pp. 345–386, 2010. View at Google Scholar · View at Scopus
  216. H. Ueno, E. Klechevsky, N. Schmitt et al., “Targeting human dendritic cell subsets for improved vaccines,” Seminars in Immunology, vol. 23, pp. 21–27, 2011. View at Publisher · View at Google Scholar
  217. L. C. Bonifaz, D. P. Bonnyay, A. Charalambous et al., “In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination,” Journal of Experimental Medicine, vol. 199, no. 6, pp. 815–824, 2004. View at Publisher · View at Google Scholar · View at Scopus
  218. A. Faham and J. G. Altin, “Ag-bearing liposomes engrafted with peptides that interact with CD11c/CD18 induce potent Ag-specific and antitumor immunity,” International Journal of Cancer, vol. 129, no. 6, pp. 1391–1403, 2011. View at Publisher · View at Google Scholar · View at Scopus
  219. A. Faham, D. Bennett, and J. G. Altin, “Liposomal Ag engrafted with peptides of sequence derived from HMGB1 induce potent Ag-specific and anti-tumour immunity,” Vaccine, vol. 27, no. 42, pp. 5846–5854, 2009. View at Publisher · View at Google Scholar · View at Scopus
  220. E. Ihanus, L. M. Uotila, A. Toivanen, M. Varis, and C. G. Gahmberg, “Red-cell ICAM-4 is a ligand for the monocyte/macrophage integrin CD11c/CD18: characterization of the binding sites on ICAM-4,” Blood, vol. 109, no. 2, pp. 802–810, 2007. View at Publisher · View at Google Scholar · View at Scopus
  221. A. Faham, T. Herringson, C. Parish, A. Suhrbier, A. A. Khromykh, and J. G. Altin, “pDNA-lipoplexes engrafted with flagellin-related peptide induce potent immunity and anti-tumour effects,” Vaccine, vol. 29, pp. 6911–6919, 2011. View at Publisher · View at Google Scholar
  222. A. Faham and J. G. Altin, “Antigen-containing liposomes engrafted with flagellin-related peptides are effective vaccines that can induce potent antitumor immunity and immunotherapeutic effect,” Journal of Immunology, vol. 185, no. 3, pp. 1744–1754, 2010. View at Publisher · View at Google Scholar · View at Scopus
  223. F. Perche, T. Benvegnu, M. Berchel et al., “Enhancement of dendritic cells transfection in vivo and of vaccination against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA,” Nanomedicine, vol. 7, no. 4, pp. 445–453, 2011. View at Publisher · View at Google Scholar · View at Scopus
  224. P. Midoux and M. Monsigny, “Efficient gene transfer by histidylated polylysine/pDNA complexes,” Bioconjugate Chemistry, vol. 10, no. 3, pp. 406–411, 1999. View at Publisher · View at Google Scholar · View at Scopus
  225. M. Mével, G. Breuzard, J. J. Yaouanc et al., “Synthesis and transfection activity of new cationic phosphoramidate lipids: high efficiency of an imidazolium derivative,” ChemBioChem, vol. 9, no. 9, pp. 1462–1471, 2008. View at Publisher · View at Google Scholar · View at Scopus
  226. D. S. Watson, A. N. Endsley, and L. Huang, “Design considerations for liposomal vaccines: influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens,” Vaccine, vol. 30, pp. 2256–2272, 2012. View at Publisher · View at Google Scholar
  227. Z. Zhong, X. Wei, B. Qi et al., “A novel liposomal vaccine improves humoral immunity and prevents tumor pulmonary metastasis in mice,” International Journal of Pharmaceutics, vol. 399, no. 1-2, pp. 156–162, 2010. View at Publisher · View at Google Scholar · View at Scopus
  228. X. Tang, C. Mo, Y. Wang, D. Wei, and H. Xiao, “Anti-tumour strategies aiming to target Tumour-associated Macrophages2012,” Immunology, vol. 138, no. 2, pp. 93–104. View at Publisher · View at Google Scholar
  229. N. Van Rooijen, N. Kors, M. V. D. Ende, and C. D. Dijkstra, “Depletion and repopulation of macrophages in spleen and liver of rat after intravenous treatment with liposome-encapsulated dichloromethylene diphosphonate,” Cell and Tissue Research, vol. 260, no. 2, pp. 215–222, 1990. View at Google Scholar · View at Scopus
  230. T. Takahashi, M. Ibata, Z. Yu et al., “Rejection of intradermally injected syngeneic tumor cells from mice by specific elimination of tumor-associated macrophages with liposome-encapsulated dichloromethylene diphosphonate, followed by induction of CD11b(+)/CCR3(-)/Gr-1(-) cells cytotoxic against the tumor cells,” Cancer Immunology and Immunotherapy, vol. 58, no. 12, pp. 2011–2023, 2009. View at Google Scholar · View at Scopus
  231. Y. Zhang, Y. Huang, P. Zhang, X. Gao, R. B. Gibbs, and S. Li, “Incorporation of a selective sigma-2 receptor ligand enhances uptake of liposomes by multiple cancer cells,” International Journal of Nanomedicine, vol. 7, pp. 4473–4485, 2012. View at Google Scholar
  232. R. Nallamothu, G. C. Wood, M. F. Kiani, B. M. Moore, F. P. Horton, and L. A. Thoma, “A targeted liposome delivery system for combretastatin A4: formulation optimization through drug loading and in vitro release studies,” PDA Journal of Pharmaceutical Science and Technology, vol. 60, no. 3, pp. 144–155, 2006. View at Google Scholar · View at Scopus
  233. J. M. Saul, A. Annapragada, J. V. Natarajan, and R. V. Bellamkonda, “Controlled targeting of liposomal doxorubicin via the folate receptor in vitro,” Journal of Controlled Release, vol. 92, no. 1-2, pp. 49–67, 2003. View at Publisher · View at Google Scholar · View at Scopus
  234. M. Dunne, J. Zheng, J. Rosenblat, D. A. Jaffray, and C. Allen, “APN/CD13-targeting as a strategy to alter the tumor accumulation of liposomes,” Journal of Controlled Release, vol. 154, pp. 298–305, 2011. View at Publisher · View at Google Scholar
  235. T. Aas, A. L. Børresen, S. Geisler et al., “Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients,” Nature Medicine, vol. 2, no. 7, pp. 811–814, 1996. View at Publisher · View at Google Scholar · View at Scopus
  236. A. Persidis, “Cancer multidrug resistance,” Nature Biotechnology, vol. 17, no. 1, pp. 94–95, 1999. View at Publisher · View at Google Scholar · View at Scopus
  237. G. Cavaletti, G. Bogliun, L. Marzorati et al., “Peripheral neurotoxicity of taxol in patients previously treated with cisplatin,” Cancer, vol. 75, pp. 1141–1150, 1995. View at Google Scholar
  238. P. Parhi, C. Mohanty, and S. K. Sahoo, “Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy,” Drug Discovery Today, vol. 17, pp. 1044–1052, 2012. View at Publisher · View at Google Scholar
  239. S. Wu and R. K. Singh, “Resistance to chemotherapy and molecularly targeted therapies: rationale for combination therapy in malignant melanoma,” Current Molecular Medicine, vol. 11, pp. 553–563, 2011. View at Publisher · View at Google Scholar
  240. Y. Chen, X. Zhu, X. Zhang, B. Liu, and L. Huang, “Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy,” Molecular Therapy, vol. 18, no. 9, pp. 1650–1656, 2010. View at Publisher · View at Google Scholar · View at Scopus
  241. J. Xia, H. Bi, Q. Yao, S. Qu, and Y. Zong, “Construction of human ScFv phage display library against ovarian tumor,” Journal of Huazhong University of Science and Technology [Medical Sciences], vol. 26, pp. 497–499, 2006. View at Publisher · View at Google Scholar
  242. N. Li, H. Fu, Y. Tie et al., “miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells,” Cancer Letters, vol. 275, no. 1, pp. 44–53, 2009. View at Publisher · View at Google Scholar · View at Scopus
  243. F. De Nigris, M. L. Balestrieri, and C. Napoli, “Targeting c-Myc, Ras and IGF cascade to treat cancer and vascular disorders,” Cell Cycle, vol. 5, no. 15, pp. 1621–1628, 2006. View at Google Scholar · View at Scopus
  244. M. J. Halaby and D. Q. Yang, “p53 translational control: a new facet of p53 regulation and its implication for tumorigenesis and cancer therapeutics,” Gene, vol. 395, no. 1-2, pp. 1–7, 2007. View at Publisher · View at Google Scholar · View at Scopus
  245. A. Grothey, “Future directions in vascular endothelial growth factor-targeted therapy for metastatic colorectal cancer,” Seminars in Oncology, vol. 33, no. 10, pp. S41–S49, 2006. View at Publisher · View at Google Scholar · View at Scopus
  246. S. H. Kang, H. J. Cho, G. Shim et al., “Cationic liposomal co-delivery of small interfering RNA and a MEK inhibitor for enhanced anticancer efficacy,” Pharmaceutical Research, vol. 28, pp. 3069–3078, 2011. View at Publisher · View at Google Scholar
  247. G. Shim, S. E. Han, Y. H. Yu et al., “Trilysinoyl oleylamide-based cationic liposomes for systemic co-delivery of siRNA and an anticancer drug,” Journal of Controlled Release, vol. 155, pp. 60–66, 2011. View at Publisher · View at Google Scholar
  248. W. Xiao, X. Chen, L. Yang, Y. Mao, Y. Wei, and L. Chen, “Co-delivery of doxorubicin and plasmid by a novel FGFR-mediated cationic liposome,” International Journal of Pharmaceutics, vol. 393, no. 1-2, pp. 119–126, 2010. View at Publisher · View at Google Scholar · View at Scopus
  249. D. Grossman, P. J. Kim, J. S. Schechner, and D. C. Altieri, “Inhibition of melanoma tumor growth in vivo by survivin targeting,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 2, pp. 635–640, 2001. View at Publisher · View at Google Scholar · View at Scopus
  250. M. Zhang, O. B. Garbuzenko, K. R. Reuhl, L. Rodriguez-Rodriguez, and T. Minko, “Two-in-one: combined targeted chemo and gene therapy for tumor suppression and prevention of metastases,” Nanomedicine, vol. 7, pp. 185–197, 2012. View at Publisher · View at Google Scholar
  251. R. R. Sawant, O. S. Vaze, K. Rockwell, and V. P. Torchilin, “Palmitoyl ascorbate-modified liposomes as nanoparticle platform for ascorbate-mediated cytotoxicity and paclitaxel co-delivery,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 75, no. 3, pp. 321–326, 2010. View at Publisher · View at Google Scholar · View at Scopus
  252. K. Unsal-Kacmaz, S. Ragunathan, E. Rosfjord et al., “The interaction of PKN3 with RhoC promotes malignant growth,” Molecular Oncology, vol. 6, pp. 284–298, 2012. View at Publisher · View at Google Scholar
  253. M. Aleku, P. Schulz, O. Keil et al., “Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression,” Cancer Research, vol. 68, no. 23, pp. 9788–9798, 2008. View at Publisher · View at Google Scholar · View at Scopus
  254. D. Strumberg, B. Schultheis, U. Traugott et al., “First-in-human phase I study of Atu027, a liposomal small interfering RNA formulation, targeting protein kinase N3 (PKN3) in patients with advanced solid tumors,” Journal of Clinical Oncology, vol. 29, Abstract 3057, 2011, ASCO Annual Meeting 2011. View at Google Scholar
  255. W. Dai, W. Jin, J. Zhang et al., “Spatiotemporally controlled co-delivery of anti-vasculature agent and cytotoxic drug by octreotide-modified stealth liposomes,” Pharmaceutical Research, vol. 29, pp. 2902–2911, 2012. View at Publisher · View at Google Scholar
  256. J. Hu, L. J. Chen, L. Liu et al., “Liposomal honokiol, a potent anti-angiogenesis agent, in combination with radiotherapy produces a synergistic antitumor efficacy without increasing toxicity,” Experimental and Molecular Medicine, vol. 40, no. 6, pp. 617–628, 2008. View at Publisher · View at Google Scholar · View at Scopus
  257. P. E. Huber, M. Bischof, J. Jenne et al., “Trimodal cancer treatment: beneficial effects of combined antiangiogenesis, radiation, and chemotherapy,” Cancer Research, vol. 65, no. 9, pp. 3643–3655, 2005. View at Publisher · View at Google Scholar · View at Scopus
  258. Y. Maitani, H. Saito, Y. Seishi et al., “A combination of liposomal sunitinib plus liposomal irinotecan and liposome co-loaded with two drugs enhanced antitumor activity in PC12-bearing mouse,” Journal of Drug Targeting, vol. 20, no. 10, pp. 873–882, 2012. View at Publisher · View at Google Scholar
  259. A. Sochanik, I. Mitrus, R. Smolarczyk et al., “Experimental anticancer therapy with vascular-disruptive peptide and liposome-entrapped chemotherapeutic agent,” Archivum Immunologiae et Therapiae Experimentalis, vol. 58, no. 3, pp. 235–245, 2010. View at Publisher · View at Google Scholar · View at Scopus
  260. Y. F. Zhang, J. C. Wang, D. Y. Bian, X. Zhang, and Q. Zhang, “Targeted delivery of RGD-modified liposomes encapsulating both combretastatin A-4 and doxorubicin for tumor therapy: in vitro and in vivo studies,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 74, no. 3, pp. 467–473, 2010. View at Publisher · View at Google Scholar · View at Scopus
  261. D. Zucker, A. V. Andriyanov, A. Steiner, U. Raviv, and Y. Barenholz, “Characterization of PEGylated nanoliposomes co-remotely loaded with topotecan and vincristine: relating structure and pharmacokinetics to therapeutic efficacy,” Journal of Controlled Release, vol. 160, pp. 281–289, 2012. View at Publisher · View at Google Scholar
  262. M. Y. Wong and G. N. Chiu, “Liposome formulation of co-encapsulated vincristine and quercetin enhanced antitumor activity in a trastuzumab-insensitive breast tumor xenograft model,” Nanomedicine, vol. 7, pp. 834–840, 2011. View at Publisher · View at Google Scholar
  263. E. J. Feldman, J. E. Kolitz, J. M. Trang et al., “Pharmacokinetics of CPX-351, a nano-scale liposomal fixed molar ratio formulation of cytarabine: daunorubicin, in patients with advanced leukemia,” Leukemia Research, vol. 36, pp. 1283–1289, 2012. View at Publisher · View at Google Scholar
  264. W. S. Lim, P. G. Tardi, N. Dos Santos et al., “Leukemia-selective uptake and cytotoxicity of CPX-351, a synergistic fixed-ratio cytarabine: daunorubicin formulation, in bone marrow xenografts,” Leukemia Research, vol. 34, no. 9, pp. 1214–1223, 2010. View at Publisher · View at Google Scholar · View at Scopus
  265. K. Riviere, H. M. Kieler-Ferguson, K. Jerger, and F. C. Szoka, “Anti-tumor activity of liposome encapsulated fluoroorotic acid as a single agent and in combination with liposome irinotecan,” Journal of Controlled Release, vol. 153, no. 3, pp. 288–296, 2011. View at Publisher · View at Google Scholar · View at Scopus
  266. P. Tardi, S. Johnstone, N. Harasym et al., “In vivo maintenance of synergistic cytarabine:daunorubicin ratios greatly enhances therapeutic efficacy,” Leukemia Research, vol. 33, no. 1, pp. 129–139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  267. Y. T. Ko, C. Falcao, and V. P. Torchilin, “Cationic liposomes loaded with proapoptotic peptide D-(KLAKLAK)2 and Bcl-2 antisense oligodeoxynucleotide G3139 for enhanced anticancer therapy,” Molecular Pharmaceutics, vol. 6, no. 3, pp. 971–977, 2009. View at Publisher · View at Google Scholar · View at Scopus
  268. G. C. Bolfarini, M. P. Siqueira-Moura, G. J. Demets, P. C. Morais, and A. C. Tedesco, “In vitro evaluation of combined hyperthermia and photodynamic effects using magnetoliposomes loaded with cucurbituril zinc phthalocyanine complex on melanoma,” Journal of Photochemistry and Photobiology B, vol. 115, pp. 1–4, 2012. View at Publisher · View at Google Scholar
  269. E. P. Botosoa, M. Maillasson, M. Mougin-Degraef et al., “Antibody-hapten recognition at the surface of functionalized liposomes studied by SPR: steric hindrance of pegylated phospholipids in stealth liposomes prepared for targeted radionuclide delivery,” Journal of Drug Delivery, vol. 2011, Article ID 368535, 9 pages, 2011. View at Publisher · View at Google Scholar
  270. V. P. Torchilin, A. L. Klibanov, L. Huang, S. O'Donnell, N. D. Nossiff, and B. A. Khaw, “Targeted accumulation of polyethylene glycol-coated immunoliposomes in infarcted rabbit myocardium,” FASEB Journal, vol. 6, no. 9, pp. 2716–2719, 1992. View at Google Scholar · View at Scopus
  271. M. Keller, R. P. Harbottle, E. Perouzel et al., “Nuclear localisation sequence templated nonviral gene delivery vectors: Investigation of intracellular trafficking events of LMD and LD vector systems,” ChemBioChem, vol. 4, no. 4, pp. 286–298, 2003. View at Publisher · View at Google Scholar · View at Scopus
  272. G. Pasut and F. M. Veronese, “State of the art in PEGylation: the great versatility achieved after forty years of research,” Journal of Controlled Release, vol. 161, pp. 461–472, 2012. View at Publisher · View at Google Scholar
  273. M. J. Roberts, M. D. Bentley, and J. M. Harris, “Chemistry for peptide and protein PEGylation,” Advanced Drug Delivery Reviews, vol. 54, no. 4, pp. 459–476, 2002. View at Publisher · View at Google Scholar · View at Scopus
  274. L. Zhu and V. P. Torchilin, “Stimulus-responsive nanopreparations for tumor targeting,” Integrative Biology, vol. 5, pp. 96–107, 2013. View at Publisher · View at Google Scholar
  275. R. van Sluis, Z. M. Bhujwalla, N. Raghunand et al., “In vivo imaging of extracellular pH using 1H MRSI,” Magnetic Resonance in Medicine, vol. 41, pp. 743–750, 1999. View at Google Scholar
  276. I. F. Tannock and D. Rotin, “Acid pH in tumors and its potential for therpeutic exploitation,” Cancer Research, vol. 49, no. 16, pp. 4373–4384, 1989. View at Google Scholar · View at Scopus
  277. D. C. Drummond, M. Zignani, and J. C. Leroux, “Current status of pH-sensitive liposomes in drug delivery,” Progress in Lipid Research, vol. 39, no. 5, pp. 409–460, 2000. View at Publisher · View at Google Scholar · View at Scopus
  278. D. D. Castelli, W. Dastrù, E. Terreno et al., “In vivo MRI multicontrast kinetic analysis of the uptake and intracellular trafficking of paramagnetically labeled liposomes,” Journal of Controlled Release, vol. 144, no. 3, pp. 271–279, 2010. View at Publisher · View at Google Scholar · View at Scopus
  279. E. Ducat, J. Deprez, A. Gillet et al., “Nuclear delivery of a therapeutic peptide by long circulating pH-sensitive liposomes: benefits over classical vesicles,” International Journal of Pharmaceutics, vol. 420, pp. 319–332, 2011. View at Publisher · View at Google Scholar
  280. S. Xiong, B. Yu, J. Wu, H. Li, and R. J. Lee, “Preparation, therapeutic efficacy and intratumoral localization of targeted daunorubicin liposomes conjugating folate-PEG-CHEMS,” Biomedicine and Pharmacotherapy, vol. 65, no. 1, pp. 2–8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  281. I. Y. Kim, Y. S. Kang, D. S. Lee et al., “Antitumor activity of EGFR targeted pH-sensitive immunoliposomes encapsulating gemcitabine in A549 xenograft nude mice,” Journal of Controlled Release, vol. 140, no. 1, pp. 55–60, 2009. View at Publisher · View at Google Scholar · View at Scopus
  282. E. A. Leite, C. M. Souza, A. D. Carvalho-Junior et al., “Encapsulation of cisplatin in long-circulating and pH-sensitive liposomes improves its antitumor effect and reduces acute toxicity,” International Journal of Nanomedicine, vol. 7, pp. 5259–5269, 2012. View at Google Scholar
  283. Y. Obata, S. Tajima, and S. Takeoka, “Evaluation of pH-responsive liposomes containing amino acid-based zwitterionic lipids for improving intracellular drug delivery in vitro and in vivo,” Journal of Controlled Release, vol. 142, no. 2, pp. 267–276, 2010. View at Publisher · View at Google Scholar · View at Scopus
  284. S. Biswas, N. S. Dodwadkar, R. R. Sawant, and V. P. Torchilin, “Development of the novel PEG-PE-based polymer for the reversible attachment of specific ligands to liposomes: synthesis and in vitro characterization,” Bioconjugate Chemistry, vol. 22, pp. 2005–2013, 2011. View at Publisher · View at Google Scholar
  285. D. Pornpattananangkul, S. Olson, S. Aryal et al., “Stimuli-responsive liposome fusion mediated by gold nanoparticles,” ACS Nano, vol. 4, no. 4, pp. 1935–1942, 2010. View at Publisher · View at Google Scholar · View at Scopus
  286. H. K. Kim, J. Van den Bossche, S. H. Hyun, and D. H. Thompson, “Acid-triggered release via dePEGylation of fusogenic liposomes mediated by heterobifunctional phenyl-substituted vinyl ethers with tunable pH-sensitivity,” Bioconjugate Chemistry, vol. 23, pp. 2071–2077, 2012. View at Publisher · View at Google Scholar
  287. A. Bandekar, S. Karve, M. Y. Chang, Q. Mu, J. Rotolo, and S. Sofou, “Antitumor efficacy following the intracellular and interstitial release of liposomal doxorubicin,” Biomaterials, vol. 33, pp. 4345–4352, 2012. View at Publisher · View at Google Scholar
  288. S. Karve, G. B. Kempegowda, and S. Sofou, “Heterogeneous domains and membrane permeability in phosphatidylcholine—phosphatidic acid rigid vesicles as a function of pH and lipid chain mismatch,” Langmuir, vol. 24, no. 11, pp. 5679–5688, 2008. View at Publisher · View at Google Scholar · View at Scopus
  289. A. Carruthers and D. L. Melchior, “Studies of the relationship between bilayer water permeability and bilayer physical state,” Biochemistry, vol. 22, no. 25, pp. 5797–5807, 1983. View at Google Scholar · View at Scopus
  290. G. B. Kempegowda, S. Karve, A. Bandekar, A. Adhikari, T. Khaimchayev, and S. Sofou, “pH-Dependent formation of lipid heterogeneities controls surface topography and binding reactivity in functionalized bilayers,” Langmuir, vol. 25, no. 14, pp. 8144–8151, 2009. View at Publisher · View at Google Scholar · View at Scopus
  291. A. Bandekar, C. Zhu, A. Gomez, M. Z. Menzenski, M. Sempkowski, and S. Sofou, “Masking and triggered unmasking of targeting ligands on liposomal chemotherapy selectively suppress tumor growth in vivo,” Molecular Pharmaceutics, vol. 10, no. 1, pp. 152–160. View at Publisher · View at Google Scholar
  292. H. Hatakeyama, H. Akita, and H. Harashima, “A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: a strategy for overcoming the PEG dilemma,” Advanced Drug Delivery Reviews, vol. 63, no. 3, pp. 152–160, 2011. View at Publisher · View at Google Scholar · View at Scopus
  293. H. Hatakeyama, H. Akita, K. Kogure et al., “Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid,” Gene Therapy, vol. 14, no. 1, pp. 68–77, 2007. View at Publisher · View at Google Scholar · View at Scopus
  294. L. Zhu, P. Kate, and V. P. Torchilin, “Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting,” ACS Nano, vol. 6, pp. 3491–3498, 2012. View at Publisher · View at Google Scholar
  295. N. Ballatori, S. M. Krance, S. Notenboom, S. Shi, K. Tieu, and C. L. Hammond, “Glutathione dysregulation and the etiology and progression of human diseases,” Biological Chemistry, vol. 390, no. 3, pp. 191–214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  296. F. Meng, W. E. Hennink, and Z. Zhong, “Reduction-sensitive polymers and bioconjugates for biomedical applications,” Biomaterials, vol. 30, no. 12, pp. 2180–2198, 2009. View at Publisher · View at Google Scholar · View at Scopus
  297. B. Goldenbogen, N. Brodersen, A. Gramatica et al., “Reduction-sensitive liposomes from a multifunctional lipid conjugate and natural phospholipids: reduction and release kinetics and cellular uptake,” Langmuir, vol. 27, pp. 10820–10829, 2011. View at Publisher · View at Google Scholar
  298. R. Kuai, W. Yuan, Y. Qin et al., “Efficient delivery of payload into tumor cells in a controlled manner by TAT and thiolytic cleavable PEG Co-modified liposomes,” Molecular Pharmaceutics, vol. 7, no. 5, pp. 1816–1826, 2010. View at Publisher · View at Google Scholar · View at Scopus
  299. G. Candiani, D. Pezzoli, L. Ciani, R. Chiesa, and S. Ristori, “Bioreducible liposomes for gene delivery: from the formulation to the mechanism of action,” PLoS ONE, vol. 5, no. 10, article e13430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  300. S. Fulda, L. Galluzzi, and G. Kroemer, “Targeting mitochondria for cancer therapy,” Nature Reviews Drug Discovery, vol. 9, no. 6, pp. 447–464, 2010. View at Publisher · View at Google Scholar · View at Scopus
  301. J. Damen, J. Regts, and G. Scherphof, “Transfer and exchange of phospholipid between small unilamellar liposomes and rat plasma high density lipoproteins. Dependence on cholesterol content and phospholipid composition,” Biochimica et Biophysica Acta, vol. 665, no. 3, pp. 538–545, 1981. View at Google Scholar · View at Scopus
  302. F. Tokumasu, A. J. Jin, and J. A. Dvorak, “Lipid membrane phase behaviour elucidated in real time by controlled environment atomic force microscopy,” Journal of Electron Microscopy, vol. 51, no. 1, pp. 1–9, 2002. View at Publisher · View at Google Scholar · View at Scopus
  303. M. P. Veiga, J. L. R. Arrondo, F. M. Goñi, A. Alonso, and D. Marsh, “Interaction of cholesterol with sphingomyelin in mixed membranes containing phosphatidylcholine, studied by spin-label ESR and IR spectroscopies. A possible stabilization of gel-phase sphingolipid domains by cholesterol,” Biochemistry, vol. 40, no. 8, pp. 2614–2622, 2001. View at Publisher · View at Google Scholar · View at Scopus
  304. J. A. Zhang, G. Anyarambhatla, L. Ma et al., “Development and characterization of a novel Cremophor EL free liposome-based paclitaxel (LEP-ETU) formulation,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 59, no. 1, pp. 177–187, 2005. View at Publisher · View at Google Scholar · View at Scopus
  305. K. Kusumoto, H. Akita, A. El-Sayed, and H. Harashima, “Effect of the anchor in polyethylene glycol-lipids on the transfection activity of PEGylated cationic liposomes encapsulating DNA,” Biological & Pharmaceutical Bulletin, vol. 35, pp. 445–448, 2012. View at Publisher · View at Google Scholar
  306. M. B. Hansen, E. van Gaal, I. Minten, G. Storm, J. C. van Hest, and D. W. Lowik, “Constrained and UV-activatable cell-penetrating peptides for intracellular delivery of liposomes,” Journal of Controlled Release, vol. 164, no. 1, pp. 87–94, 2012. View at Publisher · View at Google Scholar
  307. R. S. Chang, J. Kim, H. Y. Lee et al., “Reduced dose-limiting toxicity of intraperitoneal mitoxantrone chemotherapy using cardiolipin-based anionic liposomes,” Nanomedicine, vol. 6, no. 6, pp. 769–776, 2010. View at Publisher · View at Google Scholar · View at Scopus
  308. D. C. Drummond, O. Meyer, K. Hong, D. B. Kirpotin, and D. Papahadjopoulos, “Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors,” Pharmacological Reviews, vol. 51, no. 4, pp. 691–743, 1999. View at Google Scholar · View at Scopus
  309. M. L. Hauck, S. M. La Rue, W. P. Petros et al., “Phase I trial of doxorubicin-containing low temperature sensitive liposomes in spontaneous canine tumors,” Clinical Cancer Research, vol. 12, no. 13, pp. 4004–4010, 2006. View at Publisher · View at Google Scholar · View at Scopus
  310. K. J. Harrington, C. R. Lewanski, A. D. Northcote et al., “Phase I-II study of pegylated liposomal cisplatin (SPI-077) in patients with inoperable head and neck cancer,” Annals of Oncology, vol. 12, no. 4, pp. 493–496, 2001. View at Publisher · View at Google Scholar · View at Scopus
  311. W. C. Zamboni, A. C. Gervais, M. J. Egorin et al., “Systemic and tumor disposition of platinum after administration of cisplatin or STEALTH liposomal-cisplatin formulations (SPI-077 and SPI-077 B103) in a preclinical tumor model of melanoma,” Cancer Chemotherapy and Pharmacology, vol. 53, no. 4, pp. 329–336, 2004. View at Publisher · View at Google Scholar · View at Scopus
  312. T. Asai, S. Matsushita, E. Kenjo et al., “Dicetyl phosphate-tetraethylenepentamine-based liposomes for systemic siRNA delivery,” Bioconjugate Chemistry, vol. 22, no. 3, pp. 429–435, 2011. View at Publisher · View at Google Scholar · View at Scopus
  313. N. Yonenaga, E. Kenjo, T. Asai et al., “RGD-based active targeting of novel polycation liposomes bearing siRNA for cancer treatment,” Journal of Controlled Release, vol. 160, pp. 177–181, 2012. View at Publisher · View at Google Scholar
  314. I. Nakase, H. Akita, K. Kogure et al., “Efficient intracellular delivery of nucleic acid pharmaceuticals using cell-penetrating peptides,” Accounts of Chemical Research, vol. 45, pp. 1132–1139, 2012. View at Publisher · View at Google Scholar
  315. S. Futaki, W. Ohashi, T. Suzuki et al., “Stearylated arginine-rich peptides: a new class of transfection systems,” Bioconjugate Chemistry, vol. 12, no. 6, pp. 1005–1011, 2001. View at Publisher · View at Google Scholar · View at Scopus
  316. E. Koren and V. P. Torchilin, “Cell-penetrating peptides: breaking through to the other side,” Trends in Molecular Medicine, vol. 18, pp. 385–393, 2012. View at Publisher · View at Google Scholar
  317. E. Vivès, J. Schmidt, and A. Pèlegrin, “Cell-penetrating and cell-targeting peptides in drug delivery,” Biochimica et Biophysica Acta, vol. 1786, no. 2, pp. 126–138, 2008. View at Publisher · View at Google Scholar · View at Scopus
  318. A. A. Kale and V. P. Torchilin, “Enhanced transfection of tumor cells in vivo using “Smart” pH-sensitive TAT-modified pegylated liposomes,” Journal of Drug Targeting, vol. 15, no. 7-8, pp. 538–545, 2007. View at Publisher · View at Google Scholar · View at Scopus
  319. R. Kuai, W. Yuan, W. Li et al., “Targeted delivery of cargoes into a murine solid tumor by a cell-penetrating peptide and cleavable poly(ethylene glycol) comodified liposomal delivery system via systemic administration,” Molecular Pharmacology, vol. 8, pp. 2151–2161, 2011. View at Publisher · View at Google Scholar
  320. G. Kibria, H. Hatakeyama, and H. Harashima, “A new peptide motif present in the protective antigen of anthrax toxin exerts its efficiency on the cellular uptake of liposomes and applications for a dual-ligand system,” International Journal of Pharmaceutics, vol. 412, no. 1-2, pp. 106–114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  321. A. Koshkaryev, A. Piroyan, and V. P. Torchilin, “Bleomycin in octaarginine-modified fusogenic liposomes results in improved tumor growth inhibition,” Cancer Letters, 2012. View at Publisher · View at Google Scholar
  322. S. E. Barker, S. M. Grosse, E. K. Siapati et al., “Immunotherapy for neuroblastoma using syngeneic fibroblasts transfected with IL-2 and IL-12,” British Journal of Cancer, vol. 97, no. 2, pp. 210–217, 2007. View at Publisher · View at Google Scholar · View at Scopus
  323. A. D. Tagalakis, S. M. Grosse, Q. H. Meng et al., “Integrin-targeted nanocomplexes for tumour specific delivery and therapy by systemic administration,” Biomaterials, vol. 32, no. 5, pp. 1370–1376, 2011. View at Publisher · View at Google Scholar · View at Scopus
  324. S. M. Grosse, A. D. Tagalakis, M. F. M. Mustapa et al., “tumor-specific gene transfer with receptor-mediated nanocomplexes modified by polyethylene glycol shielding and endosomally cleavable lipid and peptide linkers,” FASEB Journal, vol. 24, no. 7, pp. 2301–2313, 2010. View at Publisher · View at Google Scholar · View at Scopus
  325. Y. Qin, H. Chen, Q. Zhang et al., “Liposome formulated with TAT-modified cholesterol for improving brain delivery and therapeutic efficacy on brain glioma in animals,” International Journal of Pharmaceutics, vol. 420, pp. 304–312, 2011. View at Publisher · View at Google Scholar
  326. N. Demaurex, “pH homeostasis of cellular organelles,” News in Physiological Sciences, vol. 17, no. 1, pp. 1–5, 2002. View at Google Scholar · View at Scopus
  327. S. Mishra, P. Webster, and M. E. Davis, “PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles,” European Journal of Cell Biology, vol. 83, no. 3, pp. 97–111, 2004. View at Publisher · View at Google Scholar · View at Scopus
  328. K. Remaut, B. Lucas, K. Braeckmans, J. Demeester, and S. C. De Smedt, “Pegylation of liposomes favours the endosomal degradation of the delivered phosphodiester oligonucleotides,” Journal of Controlled Release, vol. 117, no. 2, pp. 256–266, 2007. View at Publisher · View at Google Scholar · View at Scopus
  329. A. Makovitzki, A. Fink, and Y. Shai, “Suppression of human solid tumor growth in mice by intratumor and systemic inoculation of histidine-rich and pH-dependent host defense-like lytic peptides,” Cancer Research, vol. 69, no. 8, pp. 3458–3463, 2009. View at Publisher · View at Google Scholar · View at Scopus
  330. P. Midoux, C. Pichon, J. J. Yaouanc, and P. A. Jaffrès, “Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers,” British Journal of Pharmacology, vol. 157, no. 2, pp. 166–178, 2009. View at Publisher · View at Google Scholar · View at Scopus
  331. N. D. Sonawane, F. C. Szoka, and A. S. Verkman, “Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes,” Journal of Biological Chemistry, vol. 278, no. 45, pp. 44826–44831, 2003. View at Publisher · View at Google Scholar · View at Scopus
  332. M. Thomas and A. M. Klibanov, “Enhancing polyethylenimine's delivery of plasmid DNA into mammalian cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 23, pp. 14640–14645, 2002. View at Publisher · View at Google Scholar · View at Scopus
  333. Y. Xu and F. C. Szoka Jr., “Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection,” Biochemistry, vol. 35, no. 18, pp. 5616–5623, 1996. View at Publisher · View at Google Scholar · View at Scopus
  334. J. P. Behr, “Synthetic gene transfer vectors II: back to the future,” Journal of Drug Targeting, vol. 45, pp. 980–984, 2012. View at Publisher · View at Google Scholar
  335. W. Zhang, J. Song, B. Zhang, L. Liu, K. Wang, and R. Wang, “Design of acid-activated cell penetrating peptide for delivery of active molecules into cancer cells,” Bioconjugate Chemistry, vol. 22, no. 7, pp. 1410–1415, 2011. View at Publisher · View at Google Scholar · View at Scopus
  336. T. Jiang, Z. Zhang, Y. Zhang et al., “Dual-functional liposomes based on pH-responsive cell-penetrating peptide and hyaluronic acid for tumor-targeted anticancer drug delivery,” Biomaterials, vol. 33, no. 36, pp. 9246–9258, 2012. View at Publisher · View at Google Scholar
  337. V. V. Kumar, C. Pichon, M. Refregiers, B. Guerin, P. Midoux, and A. Chaudhuri, “Single histidine residue in head-group region is sufficient to impart remarkable gene transfection properties to cationic lipids: evidence for histidine-mediated membrane fusion at acidic pH,” Gene Therapy, vol. 10, no. 15, pp. 1206–1215, 2003. View at Publisher · View at Google Scholar · View at Scopus
  338. A. K. Varkouhi, M. Scholte, G. Storm, and H. J. Haisma, “Endosomal escape pathways for delivery of biologicals,” Journal of Controlled Release, vol. 151, no. 3, pp. 220–228, 2011. View at Publisher · View at Google Scholar · View at Scopus
  339. V. P. Torchilin, T. S. Levchenko, R. Rammohan, N. Volodina, B. Papahadjopoulos-Sternberg, and G. G. M. D'Souza, “Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 4, pp. 1972–1977, 2003. View at Publisher · View at Google Scholar · View at Scopus
  340. X. Zhang, L. Collins, and J. W. Fabre, “A powerful cooperative interaction between a fusogenic peptide and lipofectamine for the enhancement of receptor-targeted, non-viral gene delivery via integrin receptors,” Journal of Gene Medicine, vol. 3, no. 6, pp. 560–568, 2001. View at Publisher · View at Google Scholar · View at Scopus
  341. K. Sasaki, K. Kogure, S. Chaki et al., “An artificial virus-like nano carrier system: enhanced endosomal escape of nanoparticles via synergistic action of pH-sensitive fusogenic peptide derivatives,” Analytical and Bioanalytical Chemistry, vol. 391, no. 8, pp. 2717–2727, 2008. View at Publisher · View at Google Scholar · View at Scopus
  342. M. Kullberg, K. Mann, and T. J. Anchordoquy, “Targeting Her-2+ breast cancer cells with bleomycin immunoliposomes linked to LLO,” Molecular Pharmaceutics, vol. 9, no. 7, pp. 2000–2008, 2012. View at Publisher · View at Google Scholar
  343. I. R. Indran, G. Tufo, S. Pervaiz, and C. Brenner, “Recent advances in apoptosis, mitochondria and drug resistance in cancer cells,” Biochimica et Biophysica Acta, vol. 1807, no. 6, pp. 735–745, 2011. View at Publisher · View at Google Scholar · View at Scopus
  344. J. Lankelma, H. Dekker, R. F. Luque et al., “Doxorubicin gradients in human breast cancer,” Clinical Cancer Research, vol. 5, no. 7, pp. 1703–1707, 1999. View at Google Scholar · View at Scopus
  345. I. F. Tannock, C. M. Lee, J. K. Tunggal, D. S. M. Cowan, and M. J. Egorin, “Limited penetration of anticancer drugs through tumor tissue: a potential cause of resistance of solid tumors to chemotherapy,” Clinical Cancer Research, vol. 8, no. 3, pp. 878–884, 2002. View at Google Scholar · View at Scopus
  346. Y. Yamada and H. Harashima, “Mitochondrial drug delivery systems for macromolecule and their therapeutic application to mitochondrial diseases,” Advanced Drug Delivery Reviews, vol. 60, no. 13-14, pp. 1439–1462, 2008. View at Publisher · View at Google Scholar · View at Scopus
  347. Y. Men, X. X. Wang, R. J. Li et al., “The efficacy of mitochondrial targeting antiresistant epirubicin liposomes in treating resistant leukemia in animals,” International Journal of Nanomedicine, vol. 6, pp. 3125–3137, 2011. View at Google Scholar
  348. T. Nakamura, H. Akita, Y. Yamada, H. Hatakeyama, and H. Harashima, “A multifunctional envelope-type nanodevice for use in nanomedicine: concept and applications,” Accounts of Chemical Research, vol. 45, pp. 1113–1121, 2012. View at Publisher · View at Google Scholar
  349. R. Mo, Q. Sun, J. Xue et al., “Multistage pH-responsive liposomes for mitochondrial-targeted anticancer drug delivery,” Advanced Materials, vol. 24, pp. 3659–3665, 2012. View at Publisher · View at Google Scholar
  350. M. J. Weiss, J. R. Wong, and C. S. Ha, “Dequalinium, a topical antimicrobial agent, displays anticarcinoma activity based on selective mitochondrial accumulation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 15, pp. 5444–5448, 1987. View at Google Scholar · View at Scopus
  351. S. Biswas, N. S. Dodwadkar, R. R. Sawant, A. Koshkaryev, and V. P. Torchilin, “Surface modification of liposomes with rhodamine-123-conjugated polymer results in enhanced mitochondrial targeting,” Journal of Drug Targeting, vol. 19, no. 7, pp. 552–561, 2011. View at Publisher · View at Google Scholar · View at Scopus
  352. C. Ferlini, L. Cicchillitti, G. Raspaglio et al., “Paclitaxel directly binds to Bcl-2 and functionally mimics activity of Nur77,” Cancer Research, vol. 69, no. 17, pp. 6906–6914, 2009. View at Publisher · View at Google Scholar · View at Scopus
  353. S. Biswas, N. S. Dodwadkar, P. P. Deshpande, and V. P. Torchilin, “Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicitytarget mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo,” Journal of Controlled Release, vol. 159, pp. 393–402, 2012. View at Publisher · View at Google Scholar
  354. S. S. Malhi, A. Budhiraja, S. Arora et al., “Intracellular delivery of redox cycler-doxorubicin to the mitochondria of cancer cell by folate receptor targeted mitocancerotropic liposomes,” International Journal of Pharmaceutics, vol. 432, pp. 63–74, 2012. View at Publisher · View at Google Scholar
  355. A. Schroeder, J. Kost, and Y. Barenholz, “Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes,” Chemistry and Physics of Lipids, vol. 162, no. 1-2, pp. 1–16, 2009. View at Publisher · View at Google Scholar · View at Scopus
  356. A. Schroeder, R. Honen, K. Turjeman, A. Gabizon, J. Kost, and Y. Barenholz, “Ultrasound triggered release of cisplatin from liposomes in murine tumors,” Journal of Controlled Release, vol. 137, no. 1, pp. 63–68, 2009. View at Publisher · View at Google Scholar · View at Scopus
  357. T. J. Evjen, E. A. Nilssen, S. Rognvaldsson, M. Brandl, and S. L. Fossheim, “Distearoylphosphatidylethanolamine-based liposomes for ultrasound-mediated drug delivery,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 75, pp. 327–333, 2010. View at Publisher · View at Google Scholar
  358. P. Shum, J. M. Kim, and D. H. Thompson, “Phototriggering of liposomal drug delivery systems,” Advanced Drug Delivery Reviews, vol. 53, no. 3, pp. 273–284, 2001. View at Publisher · View at Google Scholar · View at Scopus
  359. A. Yavlovich, A. Singh, R. Blumenthal, and A. Puri, “A novel class of photo-triggerable liposomes containing DPPC:DC 8,9PC as vehicles for delivery of doxorubcin to cells,” Biochimica et Biophysica Acta, vol. 1808, no. 1, pp. 117–126, 2011. View at Publisher · View at Google Scholar · View at Scopus
  360. P. Agostinis, K. Berg, K. A. Cengel et al., “Photodynamic therapy of cancer: an update,” CA: A Cancer Journal for Clinicians, vol. 61, pp. 250–281, 2011. View at Publisher · View at Google Scholar
  361. B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Physics in Medicine and Biology, vol. 53, no. 9, pp. R61–R109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  362. M. Triesscheijn, M. Ruevekamp, R. Out et al., “The pharmacokinetic behavior of the photosensitizer meso-tetra-hydroxyphenyl-chlorin in mice and men,” Cancer Chemotherapy and Pharmacology, vol. 60, no. 1, pp. 113–122, 2007. View at Publisher · View at Google Scholar · View at Scopus
  363. M. J. Bovis, J. H. Woodhams, M. Loizidou, D. Scheglmann, S. G. Bown, and A. J. Macrobert, “Improved in vivo delivery of m-THPC via pegylated liposomes for use in photodynamic therapy,” Journal of Controlled Release, vol. 157, pp. 196–205, 2012. View at Publisher · View at Google Scholar
  364. M. García-Díaz, S. Nonell, A. Villanueva et al., “Do folate-receptor targeted liposomal photosensitizers enhance photodynamic therapy selectivity?” Biochimica et Biophysica Acta, vol. 1808, no. 4, pp. 1063–1071, 2011. View at Publisher · View at Google Scholar · View at Scopus
  365. H. P. Lassalle, D. Dumas, S. Gräfe, M. A. D'Hallewin, F. Guillemin, and L. Bezdetnaya, “Correlation between in vivo pharmacokinetics, intratumoral distribution and photodynamic efficiency of liposomal mTHPC,” Journal of Controlled Release, vol. 134, no. 2, pp. 118–124, 2009. View at Publisher · View at Google Scholar · View at Scopus
  366. J. N. Weinstein, R. L. Magin, M. B. Yatrin, and D. S. Zaharko, “Liposomes and local hyperthermia: selective delivery of methotrexate to heated tumors,” Science, vol. 204, no. 4389, pp. 188–191, 1979. View at Google Scholar · View at Scopus
  367. K. Kono, T. Ozawa, T. Yoshida et al., “Highly temperature-sensitive liposomes based on a thermosensitive block copolymer for tumor-specific chemotherapy,” Biomaterials, vol. 31, no. 27, pp. 7096–7105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  368. Y. Wu, Y. Yang, F. C. Zhang, C. Wu, W. L. Lu, and X. G. Mei, “Epirubicin-encapsulated long-circulating thermosensitive liposome improves pharmacokinetics and antitumor therapeutic efficacy in animals,” Journal of Liposome Research, vol. 21, pp. 221–228, 2011. View at Publisher · View at Google Scholar
  369. L. Paasonen, T. Sipila, A. Subrizi et al., “Gold-embedded photosensitive liposomes for drug delivery: triggering mechanism and intracellular release,” Journal of Controlled Release, vol. 147, pp. 136–143, 2010. View at Publisher · View at Google Scholar
  370. M. Latorre and C. Rinaldi, “Applications of magnetic nanoparticles in medicine: magnetic fluid hyperthermia,” Puerto Rico Health Sciences Journal, vol. 28, no. 3, pp. 227–238, 2009. View at Google Scholar · View at Scopus
  371. P. Pradhan, J. Giri, F. Rieken et al., “Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy,” Journal of Controlled Release, vol. 142, no. 1, pp. 108–121, 2010. View at Publisher · View at Google Scholar · View at Scopus
  372. T. Kikumori, T. Kobayashi, M. Sawaki, and T. Imai, “Anti-cancer effect of hyperthermia on breast cancer by magnetite nanoparticle-loaded anti-HER2 immunoliposomes,” Breast Cancer Research and Treatment, vol. 113, no. 3, pp. 435–441, 2009. View at Publisher · View at Google Scholar · View at Scopus
  373. B. Smith, I. Lyakhov, K. Loomis et al., “Hyperthermia-triggered intracellular delivery of anticancer agent to HER2+ cells by HER2-specific affibody (ZHER2-GS-Cys)-conjugated thermosensitive liposomes (HER2+ affisomes),” Journal of Controlled Release, vol. 153, no. 2, pp. 187–194, 2011. View at Publisher · View at Google Scholar · View at Scopus
  374. J. W. Hopewell, G. M. Morris, A. Schwint, and J. A. Coderre, “The radiobiological principles of boron neutron capture therapy: a critical review,” Applied Radiation and Isotopes, vol. 69, pp. 1756–1759, 2011. View at Publisher · View at Google Scholar
  375. S. Miyata, S. Kawabata, R. Hiramatsu et al., “Computed tomography imaging of transferrin targeting liposomes encapsulating both boron and iodine contrast agents by convection-enhanced delivery to F98 rat glioma for boron neutron capture therapy,” Neurosurgery, vol. 68, no. 5, pp. 1380–1387, 2011. View at Publisher · View at Google Scholar · View at Scopus
  376. A. Doi, S. Kawabata, K. Iida et al., “tumor-specific targeting of sodium borocaptate (BSH) to malignant glioma by transferrin-PEG liposomes: a modality for boron neutron capture therapy,” Journal of neuro-oncology, vol. 87, no. 3, pp. 287–294, 2008. View at Publisher · View at Google Scholar · View at Scopus
  377. J. H. Ryu, H. Koo, I. C. Sun et al., “tumor-targeting multi-functional nanoparticles for theragnosis: new paradigm for cancer therapy,” Advanced Drug Delivery Reviews, vol. 64, no. 13, pp. 1447–1458, 2012. View at Publisher · View at Google Scholar
  378. X. Ma, Y. Zhao, and X. J. Liang, “Theranostic nanoparticles engineered for clinic and pharmaceutics,” Accounts of Chemical Research, vol. 44, pp. 1114–1122, 2011. View at Publisher · View at Google Scholar
  379. R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature, vol. 452, no. 7187, pp. 580–589, 2008. View at Publisher · View at Google Scholar · View at Scopus
  380. W. T. Al-Jamal and K. Kostarelos, “Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine,” Accounts of Chemical Research, vol. 44, pp. 1094–1104, 2011. View at Google Scholar
  381. C. Heneweer, S. E. Gendy, and O. Penate-Medina, “Liposomes and inorganic nanoparticles for drug delivery and cancer imaging,” Therapeutic Delivery, vol. 3, pp. 645–656, 2012. View at Google Scholar
  382. A. L. Petersen, A. E. Hansen, A. Gabizon, and T. L. Andresen, “Liposome imaging agents in personalized medicine,” Advanced Drug Delivery Reviews, vol. 64, pp. 1417–1435, 2012. View at Publisher · View at Google Scholar
  383. G. D. Kenny, N. Kamaly, T. L. Kalber et al., “Novel multifunctional nanoparticle mediates siRNA tumour delivery, visualisation and therapeutic tumour reduction in vivo,” Journal of Controlled Release, vol. 149, no. 2, pp. 111–116, 2011. View at Publisher · View at Google Scholar · View at Scopus
  384. K. Kono, S. Nakashima, D. Kokuryo et al., “Multi-functional liposomes having temperature-triggered release and magnetic resonance imaging for tumor-specific chemotherapy,” Biomaterials, vol. 32, no. 5, pp. 1387–1395, 2011. View at Publisher · View at Google Scholar · View at Scopus
  385. A. H. Negussie, P. S. Yarmolenko, A. Partanen et al., “Formulation and characterisation of magnetic resonance imageable thermally sensitive liposomes for use with magnetic resonance-guided high intensity focused ultrasound,” International Journal of Hyperthermia, vol. 27, no. 2, pp. 140–155, 2011. View at Publisher · View at Google Scholar · View at Scopus
  386. A. Ranjan, G. C. Jacobs, D. L. Woods et al., “Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit Vx2 tumor model,” Journal of Controlled Release, vol. 158, pp. 487–494, 2012. View at Publisher · View at Google Scholar
  387. E. Cittadino, M. Ferraretto, E. Torres et al., “MRI evaluation of the antitumor activity of paramagnetic liposomes loaded with prednisolone phosphate,” European Journal of Pharmaceutical Sciences, vol. 45, pp. 436–441, 2012. View at Publisher · View at Google Scholar
  388. S. Li, B. Goins, L. Zhang, and A. Bao, “Novel multifunctional theranostic liposome drug delivery system: construction, characterization, and multimodality MR, near-infrared fluorescent, and nuclear imaging,” Bioconjugate Chemistry, vol. 23, no. 6, pp. 1322–1332, 2012. View at Publisher · View at Google Scholar
  389. N. Mitchell, T. L. Kalber, M. S. Cooper et al., “Incorporation of paramagnetic, fluorescent and PET/SPECT contrast agents into liposomes for multimodal imaging,” Biomaterials, vol. 34, no. 4, pp. 1179–1192, 2012. View at Publisher · View at Google Scholar
  390. M. De Smet, E. Heijman, S. Langereis, N. M. Hijnen, and H. Grüll, “Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: an in vivo proof-of-concept study,” Journal of Controlled Release, vol. 150, no. 1, pp. 102–110, 2011. View at Publisher · View at Google Scholar · View at Scopus
  391. M. Mikhaylova, I. Stasinopoulos, Y. Kato, D. Artemov, and Z. M. Bhujwalla, “Imaging of cationic multifunctional liposome-mediated delivery of COX-2 siRNA,” Cancer Gene Therapy, vol. 16, no. 3, pp. 217–226, 2009. View at Publisher · View at Google Scholar · View at Scopus
  392. C. Grange, S. Geninatti-Crich, G. Esposito et al., “Combined delivery and magnetic resonance imaging of neural cell adhesion molecule-targeted doxorubicin-containing liposomes in experimentally induced Kaposi's sarcoma,” Cancer Research, vol. 70, no. 6, pp. 2180–2190, 2010. View at Publisher · View at Google Scholar · View at Scopus
  393. L. Deng, X. Ke, Z. He et al., “A MSLN-targeted multifunctional nanoimmunoliposome for MRI and targeting therapy in pancreatic cancer,” International Journal of Nanomedicine, vol. 7, pp. 5053–5065, 2012. View at Google Scholar
  394. J. H. Maeng, D. H. Lee, K. H. Jung et al., “Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer,” Biomaterials, vol. 31, no. 18, pp. 4995–5006, 2010. View at Publisher · View at Google Scholar · View at Scopus
  395. N. A. Saunders, F. Simpson, E. W. Thompson et al., “Role of intratumoural heterogeneity in cancer drug resistance: molecular and clinical perspectives,” EMBO Molecular Medicine, vol. 4, pp. 675–684, 2012. View at Publisher · View at Google Scholar
  396. S. Bhatia, J. V. Frangioni, R. M. Hoffman, A. J. Iafrate, and K. Polyak, “The challenges posed by cancer heterogeneity,” Nature Biotechnology, vol. 30, pp. 604–610, 2012. View at Publisher · View at Google Scholar