Table of Contents Author Guidelines Submit a Manuscript
Journal of Drug Delivery
Volume 2014 (2014), Article ID 804616, 10 pages
http://dx.doi.org/10.1155/2014/804616
Research Article

Design and Evaluation of Polyox and Pluronic Controlled Gastroretentive Delivery of Troxipide

Department of Pharmaceutics, MAEER’s Maharashtra Institute of Pharmacy, MIT Campus, Kothrud, Pune 411038, India

Received 7 August 2014; Revised 9 October 2014; Accepted 22 October 2014; Published 19 November 2014

Academic Editor: Jaleh Varshosaz

Copyright © 2014 Swati C. Jagdale et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. K. Nayak, R. Maji, and B. Das, “Gastroretentive drug delivery systems: a review,” Asian Journal of Pharmaceutical and Clinical Research, vol. 3, no. 1, pp. 2–10, 2010. View at Google Scholar · View at Scopus
  2. M. Jhansee and D. A. Kumar, “Recent advances in gastro retentive drug delivery system: a review,” Mintage Journal of Pharmaceutical and Medical Sciences, vol. 27, no. 2, pp. 25–27, 2013. View at Google Scholar
  3. A. Pandey, G. Kumar, P. Kothiyal, and Y. Barshiliya, “A review on current approaches in gastro retentive drug delivery system,” Asian Journal of Pharmacy, Nursing and Medical Sciences, vol. 2, no. 4, pp. 60–77, 2012. View at Google Scholar
  4. N. Rouge, P. Buri, and E. Doelker, “Drug absorption sites in the gastrointestinal tract and dosage forms for site-specific delivery,” International Journal of Pharmaceutics, vol. 136, no. 1-2, pp. 117–139, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. J. T. Fell, L. Whitehead, and J. H. Collett, “Prolonged gastric retention: using floating dosage forms,” Pharmaceutical Technology, vol. 24, no. 3, pp. 82–90, 2000. View at Google Scholar · View at Scopus
  6. A. Streubel, J. Siepmann, and R. Bodmeier, “Gastroretentive drug delivery systems,” Expert Opinion on Drug Delivery, vol. 3, no. 2, pp. 217–233, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. B. R. Conway, “Drug delivery strategies for the treatment of Helicobacter pylori infections,” Current Pharmaceutical Design, vol. 11, no. 6, pp. 775–790, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. P. S. Rajinikanth, J. Balasubramaniam, and B. Mishra, “Development and evaluation of a novel floating in situ gelling system of amoxicillin for eradication of Helicobacter pylori,” International Journal of Pharmaceutics, vol. 335, no. 1-2, pp. 114–122, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. C. H. Prasanthi, “Focus on current trends in the treatment of Helicobacter pylori infection: an update,” International Journal of Pharmaceutical Sciences Review and Research, vol. 9, no. 1, pp. 42–50, 2011. View at Google Scholar · View at Scopus
  10. B. Marshall, “Helicobacter pylori: 20 years on,” Clinical Medicine, vol. 2, no. 2, pp. 147–152, 2002. View at Google Scholar · View at Scopus
  11. S. H. Shah, J. K. Patel, and N. V. Patel, “Stomach specific floating drug delivery system: a review,” International Journal of PharmTech Research, vol. 1, no. 3, pp. 623–633, 2009. View at Google Scholar · View at Scopus
  12. A. A. Deshpande, C. T. Rhodes, N. H. Shah, and A. W. Malick, “Controlled-release drug delivery systems for prolonged gastric residence: an overview,” Drug Development and Industrial Pharmacy, vol. 22, no. 6, pp. 531–539, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. “Aplace tablets,” Kyorin Pharmaceutical, Tokyo, Japan, http://www.kyorin-pharm.co.jp/prodinfo/medicine/pdf/Aplace.pdf.
  14. B. Dewan and N. Sahu, “Bioequivalence study of troxipide tablet formulation,” Journal of Bioequivalence & Bioavailability, vol. 2, no. 2, pp. 50–54, 2003. View at Google Scholar
  15. M. E. Aulton, “Pharmaceutical preformulation,” in Aulton’s Pharmaceutics: The Design and Manufacture of Medicines, pp. 354–356, Churchill Livingstone, 3rd edition, 2007. View at Google Scholar
  16. S. C. Jagdale, S. Patil, and B. S. Kuchekar, “Application of design of experiment for floating drug delivery of tapentadol hydrochloride,” Computational and Mathematical Methods in Medicine, vol. 2013, Article ID 625729, 7 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Sriamornsak, N. Thirawong, and K. Korkerd, “Swelling, erosion and release behavior of alginate-based matrix tablets,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 66, no. 3, pp. 435–450, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. S. C. Jagdale, A. J. Agavekar, S. V. Pandya, B. S. Kuchekar, and A. R. Chabukswar, “Formulation and evaluation of gastroretentive drug delivery system of propranolol hydrochloride,” AAPS PharmSciTech, vol. 10, no. 3, pp. 1071–1079, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Costa and J. M. S. Lobo, “Modeling and comparison of dissolution profiles,” European Journal of Pharmaceutical Sciences, vol. 13, no. 2, pp. 123–133, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Sharma, Elementary Organic Spectroscopy: Principles and Chemical Application, S. Chand & Company, New Delhi, India, 4th edition, 2009.
  21. http://www.ich.org/products/guidelines/quality/article/quality-guidelines.html.
  22. L. A. Allen, N. G. Popovich, and H. C. Ansel, “Powders and granules,” in Ansel’s Pharmaceutical Dosage Form & Drug Delivery System, pp. 186–204, Lippincott William & Wilkins, 9th edition, 2010. View at Google Scholar
  23. Government of India and Ministry of health and welfare, Indian Pharmacopoeia, vol. 1-2, Controller of Publications, New Delhi, India, 2010.
  24. J. Varshosaz, J. Emami, and E. Jafari, “Comparison of hydrophilic natural gums and cellulosic polymers in formulation of sustained-release matrix tablets of terbutalin sulfate,” Research in Pharmaceutical Sciences, vol. 1, pp. 30–39, 2006. View at Google Scholar
  25. S. Jagdale, P. Kurhe, B. Kuchekar, and A. Chabukswar, “Application of design of experiments to optimizing novel gastroretentive drug delivery of simvastatin.,” Current drug delivery, vol. 10, no. 5, pp. 527–541, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. V. T. Thakkar, P. A. Shah, T. G. Soni, M. Y. Parmar, M. C. Gohel, and T. R. Gandhi, “Fabrication and evaluation of levofloxacin hemihydrate floating tablet,” Research in Pharmaceutical Sciences, vol. 3, no. 2, pp. 1–8, 2008. View at Google Scholar
  27. A. Streubel, J. Siepmann, and R. Bodmeier, “Floating matrix tablets based on low density foam powder: effects of formulation and processing parameters on drug release,” European Journal of Pharmaceutical Sciences, vol. 18, no. 1, pp. 37–45, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. B. S. Dave, A. F. Amin, and M. M. Patel, “Gastroretentive drug delivery system of ranitidine hydrochloride: formulation and in vitro evaluation,” AAPS PharmSciTech, vol. 5, no. 2, pp. 77–82, 2004. View at Google Scholar · View at Scopus
  29. J. K. Patel, N. V. Patel, and S. H. Shah, “In vitro controlled release of colon targeted mesalamine from compritol ATO 888 based matrix tablets using factorial design,” Research in Pharmaceutical Sciences, vol. 4, no. 2, pp. 63–75, 2009. View at Google Scholar · View at Scopus