Table of Contents
Journal of Ecosystems
Volume 2013, Article ID 532424, 16 pages
http://dx.doi.org/10.1155/2013/532424
Research Article

Comparison of Two PARAFAC Models of Dissolved Organic Matter Fluorescence for a Mid-Atlantic Forested Watershed in the USA

1Department of Geological Sciences, University of Delaware, Newark, DE 19716, USA
2Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
3Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA

Received 14 January 2013; Revised 2 June 2013; Accepted 17 June 2013

Academic Editor: Fu-Liu Xu

Copyright © 2013 Shatrughan Singh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. M. Thurman, Organic Geochemistry of Natural Waters, Martinus Nijhoff/Dr W. Junk, Dordrecht, The Netherlands, 1985.
  2. G. R. Aiken, C. C. Gilmour, D. P. Krabbenhoft, and W. Orem, “Dissolved organic matter in the Florida everglades: implications for ecosystem restoration,” Critical Reviews in Environmental Science and Technology, vol. 41, no. 1, pp. 217–248, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Yamashita and R. Jaffé, “Characterizing the interactions between trace metals and dissolved organic matter using excitation-emission matrix and parallel factor analysis,” Environmental Science and Technology, vol. 42, no. 19, pp. 7374–7379, 2008. View at Publisher · View at Google Scholar
  4. T. E. C. Kraus, B. A. Bergamaschi, P. J. Hernes et al., “Assessing the contribution of wetlands and subsided islands to dissolved organic matter and disinfection byproduct precursors in the Sacramento-San Joaquin River Delta: a geochemical approach,” Organic Geochemistry, vol. 39, no. 9, pp. 1302–1318, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. M. A. Moran, W. M. Sheldon Jr., and R. G. Zepp, “Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter,” Limnology and Oceanography, vol. 45, no. 6, pp. 1254–1264, 2000. View at Google Scholar · View at Scopus
  6. C. J. Williams, Y. Yamashita, H. F. Wilson, R. Jaffe, and M. A. Xenopoulos, “Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems,” Limnology and Oceanography, vol. 55, no. 3, pp. 1159–1171, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. R. G. Wetzel, “Dissolved organic carbon: detrital energetics, metabolic regulators, and drivers of ecosystem stability of aquatic ecosystems,” in Aquatic Ecosystems: Interactivity of Dissolved Organic Matter, S. E. G. Findlay and R. L. Sinsabaugh, Eds., pp. 455–477, Academic Press, San Diego, Calif, USA, 2003. View at Google Scholar
  8. A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnology and Oceanography, vol. 26, pp. 43–53, 1981. View at Google Scholar
  9. J. L. Weishaar, G. R. Aiken, B. A. Bergamaschi, M. S. Fram, R. Fujii, and K. Mopper, “Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon,” Environmental Science and Technology, vol. 37, no. 20, pp. 4702–4708, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. P. G. Coble, S. A. Green, N. V. Blough, and R. B. Gagosian, “Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy,” Nature, vol. 348, no. 6300, pp. 432–435, 1990. View at Google Scholar · View at Scopus
  11. D. M. McKnight, E. W. Boyer, P. K. Westerhoff, P. T. Doran, T. Kulbe, and D. T. Andersen, “Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity,” Limnology and Oceanography, vol. 46, no. 1, pp. 38–48, 2001. View at Google Scholar · View at Scopus
  12. P. J. Hernes, R. G. M. Spencer, R. Y. Dyda, B. A. Pellerin, P. A. M. Bachand, and B. A. Bergamaschi, “The role of hydrologic regimes on dissolved organic carbon composition in an agricultural watershed,” Geochimica et Cosmochimica Acta, vol. 72, no. 21, pp. 5266–5277, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. J. F. Saraceno, B. A. Pellerin, B. D. Downing, E. Boss, P. A. M. Bachand, and B. A. Bergamaschi, “High-frequency in situ optical measurements during a storm event: assessing relationships between dissolved organic matter, sediment concentrations, and hydrologic processes,” Journal of Geophysical Research G, vol. 114, no. 4, Article ID G00F09, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnology and Oceanography, vol. 53, no. 3, pp. 955–969, 2008. View at Google Scholar · View at Scopus
  15. R. G. M. Spencer, P. J. Hernes, R. Ruf et al., “Temporal controls on dissolved organic matter and lignin biogeochemistry in a pristine tropical river, Democratic Republic of Congo,” Journal of Geophysical Research G, vol. 115, no. 3, Article ID G03013, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Ohno, “Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter,” Environmental Science and Technology, vol. 36, no. 4, pp. 742–746, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. R. M. Cory and D. M. McKnight, “Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter,” Environmental Science and Technology, vol. 39, no. 21, pp. 8142–8149, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. J. B. Fellman, E. Hood, D. V. D'Amore, R. T. Edwards, and D. White, “Seasonal changes in the chemical quality and biodegradability of dissolved organic matter exported from soils to streams in coastal temperate rainforest watersheds,” Biogeochemistry, vol. 95, no. 2-3, pp. 277–293, 2009. View at Publisher · View at Google Scholar
  19. C. A. Stedmon, S. Markager, and R. Bro, “Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy,” Marine Chemistry, vol. 82, no. 3-4, pp. 239–254, 2003. View at Google Scholar · View at Scopus
  20. J. Boehme, P. Coble, R. Conmy, and A. Stovall-Leonard, “Examining CDOM fluorescence variability using principal component analysis: seasonal and regional modeling of three-dimensional fluorescence in the Gulf of Mexico,” Marine Chemistry, vol. 89, no. 1–4, pp. 3–14, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. J. B. Fellman, M. P. Miller, R. M. Cory, D. V. D'Amore, and D. White, “Characterizing dissolved organic matter using PARAFAC modeling of fluorescence spectroscopy: a comparison of two models,” Environmental Science and Technology, vol. 43, no. 16, pp. 6228–6234, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. L. G. Larsen, G. R. Aiken, J. W. Harvey, G. B. Noe, and J. P. Crimaldi, “Using fluorescence spectroscopy to trace seasonal DOM dynamics, disturbance effects, and hydrologic transport in the Florida Everglades,” Journal of Geophysical Research G, vol. 115, no. 3, Article ID G03001, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Inamdar, N. Finger, S. Singh et al., “Dissolved organic matter (DOM) concentration and quality in a forested mid-Atlantic watershed, USA,” Biogeochemistry, vol. 108, no. 1–3, pp. 55–76, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Inamdar, S. Singh, S. Dutta et al., “Fluorescence characteristics and sources of dissolved organic matter for stream water during storm events in a forested mid-Atlantic watershed,” Journal of Geophysical Research G, vol. 116, no. 3, Article ID G03043, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. “Maryland State Climatologist Office Data Page,” 2008, http://www.atmos.umd.edu/~climate/weather/marylandnormals.htm.
  26. J. T. van Stan II and D. F. Levia Jr., “Inter- and intraspecific variation of stemflow production from Fagus grandifolia Ehrh. (American beech) and Liriodendron tulipifera L. (yellow poplar) in relation to bark microrelief in the eastern United States,” Ecohydrology, vol. 3, no. 1, pp. 11–19, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Ameel, J. R. P. Axler, and C. J. Owen, “Persulfate digestion for determination of total nitrogen and phosphorus in low-nutrient waters,” American Environmental Laboratory, vol. 10, p. 1, 1993. View at Google Scholar
  28. A. J. Lawaetz and C. A. Stedmon, “Fluorescence intensity calibration using the Raman scatter peak of water,” Applied Spectroscopy, vol. 63, no. 8, pp. 936–940, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Bro and A. K. Smilde, “Centering and scaling in component analysis,” Journal of Chemometrics, vol. 17, no. 1, pp. 16–33, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Westerhoff, W. Chen, and M. Esparza, “Fluorescence analysis of a standard fulvic acid and tertiary treated wastewater,” Journal of Environmental Quality, vol. 30, no. 6, pp. 2037–2046, 2001. View at Google Scholar · View at Scopus
  31. N. Mladenov, P. Huntsman-Mapila, P. Wolski, W. R. L. Masamba, and D. M. McKnight, “Dissolved organic matter accumulation, reactivity, and redox state in ground water of a recharge wetland,” Wetlands, vol. 28, no. 3, pp. 747–759, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. C. A. Stedmon and R. Bro, “Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial,” Limnology and Oceanography, vol. 6, pp. 572–579, 2008. View at Google Scholar · View at Scopus
  33. S. A. Green and N. V. Blough, “Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters,” Limnology and Oceanography, vol. 39, no. 8, pp. 1903–1916, 1994. View at Google Scholar · View at Scopus
  34. P. G. Coble, “Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy,” Marine Chemistry, vol. 51, no. 4, pp. 325–346, 1996. View at Google Scholar · View at Scopus
  35. J. B. Fellman, R. G. M. Spencer, P. J. Hernes, R. T. Edwards, D. V. D'Amore, and E. Hood, “The impact of glacier runoff on the biodegradability and biochemical composition of terrigenous dissolved organic matter in near-shore marine ecosystems,” Marine Chemistry, vol. 121, no. 1–4, pp. 112–122, 2010. View at Publisher · View at Google Scholar
  36. S. Singh, E. J. D'Sa, and E. M. Swenson, “Chromophoric dissolved organic matter (CDOM) variability in Barataria Basin using excitation-emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC),” Science of the Total Environment, vol. 408, no. 16, pp. 3211–3222, 2010. View at Publisher · View at Google Scholar
  37. Y. Yamashita, A. Panton, C. Mahaffey, and R. Jaffé, “Assessing the spatial and temporal variability of dissolved organic matter in Liverpool Bay using excitation-emission matrix fluorescence and parallel factor analysis,” Ocean Dynamics, vol. 61, no. 5, pp. 569–579, 2010. View at Publisher · View at Google Scholar
  38. M. Chen, R. M. Price, Y. Yamashita, and R. Jaffé, “Comparative study of dissolved organic matter from groundwater and surface water in the Florida coastal Everglades using multi-dimensional spectrofluorometry combined with multivariate statistics,” Applied Geochemistry, vol. 25, no. 6, pp. 872–880, 2010. View at Publisher · View at Google Scholar
  39. N. Hudson, A. Baker, and D. Reynolds, “Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters—a review,” River Research and Applications, vol. 23, no. 6, pp. 631–649, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Kalbitz and W. Geyer, “Humification indices of water-soluble fulvic acids derived from synchronous fluorescence spectra—effects of spectrometer type and concentration,” Journal of Plant Nutrition and Soil Science, vol. 164, no. 3, pp. 259–265, 2001. View at Google Scholar
  41. N. S. Bolan, D. C. Adriano, A. Kunhikrishnan, T. James, R. McDowell, and N. Senesi, “Dissolved organic matter: biogeochemistry, dynamics, and environmental significance in soils,” in Advances in Agronomy, D. Sparks, Ed., pp. 1–75, Elsevier, New York, NY, USA, 1st edition, 2011. View at Google Scholar
  42. K. Kalbitz, A. Meyer, R. Yang, and P. Gerstberger, “Response of dissolved organic matter in the forest floor to long-term manipulation of litter and throughfall inputs,” Biogeochemistry, vol. 86, no. 3, pp. 301–318, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. H. V.-M. Nguyen, J. Hur, and H.-S. Shin, “Changes in spectroscopic and molecular weight characteristics of dissolved organic matter in a river during a storm event,” Water, Air, and Soil Pollution, vol. 212, no. 1–4, pp. 395–406, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Santín, Y. Yamashita, X. L. Otero, M. Á. Álvarez, and R. Jaffé, “Characterizing humic substances from estuarine soils and sediments by excitation-emission matrix spectroscopy and parallel factor analysis,” Biogeochemistry, vol. 96, no. 1–3, pp. 131–147, 2009. View at Publisher · View at Google Scholar