Table of Contents
Journal of Ecosystems
Volume 2013 (2013), Article ID 737059, 6 pages
http://dx.doi.org/10.1155/2013/737059
Research Article

Investigating the Effect of Aspirin on Mercury Toxicity

1Department of Environmental Protection, Almus Vocational High School, Gaziosmanpaşa University, Almus, 60900 Tokat, Turkey
2Department of Fisheries, Almus Vocational High School, Gaziosmanpaşa University, Almus, 60900 Tokat, Turkey

Received 6 May 2013; Accepted 25 July 2013

Academic Editor: José Morillo

Copyright © 2013 Fatih Polat and Tarık Dal. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. Erdem, A. Aydın, A. Sayal, A. Cemal, V. Kesik, and A. E. Kurekçi, “In vivo investigation of efficiency and preventive role of selenium and zinc on aspirin induced impairment on antioxidant system, hepatic and renal toxicity,” Toxicology Letters, vol. 164, p. 131, 2006. View at Google Scholar
  2. F. S. Tunaoğlu, “The use of Aspirin and childhood rheumatic diseases,” Klinik Pediatrik, vol. 1, pp. 26–34, 2002. View at Google Scholar
  3. M. S. Astorga-España, E. M. Peña-Méndez, and F. J. García-Montelongo, “Application of principal component analysis to the study of major cations and trace metals in fish from Tenerife (Canary Islands),” Chemometrics and Intelligent Laboratory Systems, vol. 49, no. 2, pp. 173–178, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. B. P. Cid, C. Boia, L. Pombo, and E. Rebelo, “Determination of trace metals in fish species of the Ria de Aveiro (Portugal) by electrothermal atomic absorption spectrometry,” Food Chemistry, vol. 75, no. 1, pp. 93–100, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. J. A. Baig, T. G. Kazi, M. B. Arain et al., “Arsenic fractionation in sediments of different origins using BCR sequential and single extraction methods,” Journal of Hazardous Materials, vol. 167, no. 1–3, pp. 745–751, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. O. D. Uluozlu, M. Tuzen, and M. Soylak, “Speciation and separation of Cr(VI) and Cr(III) using coprecipitation with Ni2+/2-Nitroso-1-naphthol-4-sulfonic acid and determination by FAAS in water and food samples,” Food and Chemical Toxicology, vol. 47, no. 10, pp. 2601–2605, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Sounderajan, G. K. Kumar, and A. C. Udas, “Cloud point extraction and electrothermal atomic absorption spectrometry of Se (IV)-3,3′-diaminobenzidine for the estimation of trace amounts of Se (IV) and Se (VI) in environmental water samples and total selenium in animal blood and fish tissue samples,” Journal of Hazardous Materials, vol. 175, no. 1–3, pp. 666–672, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Mendil, O. F. Ünal, M. Tüzen, and M. Soylak, “Determination of trace metals in different fish species and sediments from the River Yeşilırmak in Tokat, Turkey,” Food and Chemical Toxicolojy, vol. 48, pp. 1383–1392, 2010. View at Google Scholar
  9. S. Katalay and H. Parlak, “The effects of water pollution on blood parameters of Gobius niger Linn. 1758 (Pisces Gobiidae),” Journal of Fisheries and Aquatic Sciences, vol. 19, pp. 115–121, 2002. View at Google Scholar
  10. A. Larsson, C. Haux, and M.-L. Sjobeck, “Fish physiology and metal pollution: results and experiences from laboratory and field studies,” Ecotoxicology and Environmental Safety, vol. 9, no. 3, pp. 250–281, 1985. View at Google Scholar · View at Scopus
  11. I. Kir and H. Tumantozlu, “Investigation of some heavy metal accumulation in water, sediment and carp (Cyprinus carpio) samples of Karacaoren-II Dam Lake,” Ekoloji, no. 82, pp. 65–70, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. I. Cengizler, Fish Diseases, Çukurova University Faculty of Aquaculture Issues, Adana, Turkey, 2000.
  13. A. Niazi, T. Momeni-Isfahani, and Z. Ahmari, “Spectrophotometric determination of mercury in water samples after cloud point extraction using nonionic surfactant Triton X-114,” Journal of Hazardous Materials, vol. 165, no. 1–3, pp. 1200–1203, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Hamza, A. S. Bashammakh, A. A. Al-Sibaai, H. M. Al-Saidi, and M. S. El-Shahawi, “Part 1. Spectrophotometric determination of trace mercury (II) in dental-unit wastewater and fertilizer samples using the novel reagent 6-hydroxy-3-(2-oxoindolin-3-ylideneamino)-2-thioxo-2H-1,3-thiazin-4(3H)-one and the dual-wavelength β-correction spectrophotometry,” Journal of Hazardous Materials, vol. 178, no. 1–3, pp. 287–292, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Soivio, K. Nynolm, and K. Westman, “A technique for repeated sampling of the blood of individual resting fish,” Journal of Experimental Biology, vol. 63, no. 1, pp. 207–217, 1975. View at Google Scholar · View at Scopus
  16. A. Soivio, K. Westman, and K. Nyholm, “Changes in haematocrit values in blood samples treated with and without oxygen: a comparative study with four salmonid species,” Journal of Fish Biology, vol. 6, no. 6, pp. 763–769, 1974. View at Google Scholar · View at Scopus
  17. A. Soivio and A. Oikari, “Haematological effects of stress on a teleost, Esox lucius L.,” Journal of Fish Biology, vol. 8, no. 5, pp. 397–411, 1976. View at Google Scholar · View at Scopus
  18. A. Yıldırım, Pollutants upon the Effects of Blood Paramaters on Carps Living in Yeşilırmak River, Gaziosmanpaşa Universty, Graduate School of Natural and Applied Sciences, Department of Fisheres and Aquaculture, Tokat, Turkey, 2010.
  19. M. E. Özaslan, Determınatıon of sera glucose, electrolıte, hematocrıte and some blood parameters of clarias gariepinus from Draınage Channels of Lower Seyhan Plaıns [M.S. thesis], University of Çukurova, Biology Department, Adana, Turkey, 2008.
  20. H. M. Levesque, T. W. Moon, P. G. C. Campbell, and A. Hontela, “Seasonal variation in carbohydrate and lipid metabolism of yellow perch (Perca flavescens) chronically exposed to metals in the field,” Aquatic Toxicology, vol. 60, no. 3-4, pp. 257–267, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. P. C. Champe, A. Richard, and J. B. Harvey, Biochemistry, J.B. Lippincott, New York, NY, USA, 1994.
  22. Deutsce Gesellschaft für Klinische Chemie (DGKC), Journal of Clinical Chemistry and Clinical Biochemistry, vol. 10, pp. 182–193, 1972.
  23. X. Wang, “A chelate theory for the mechanism of action of aspirin-like drugs,” Medical Hypotheses, vol. 50, no. 3, pp. 239–251, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Kocabatmaz and G. Ekingen, “Different types of fish, the blood sample is taken and the standardization of hematological methods,” 1982, TÜBİTAK, VHAG Project No: 557, 73.
  25. A. K. Siwicki and D. P. Anderson, “Immunostimulation in fish: measuring the effects of stimulants by serological and immunological methods,” in Proceedings of the Nordic Symposium on Fish Immunology, pp. 19–22, Lysekil, Sweden, 1993.
  26. Z. Durgun, E. Keskin, N. Dönmez, and F. Onder, “Effects of garlic and aspirin on some blood parameters of New Zeland rabbits fed cholesterol rich ration,” Veteriner Bilimleri Dergisi, vol. 14, pp. 5–8, 1998. View at Google Scholar
  27. R. Apitz-Castro, E. Ledezma, J. Escalante et al., “Reversible prevention of platelet activation by (E,Z)-4,5,9-trithiadodeca-1,6,11-triene 9-oxide (ajoene) in dogs under extracorporeal circulation,” Arzneimittel-Forschung, vol. 38, no. 7, pp. 901–904, 1988. View at Google Scholar · View at Scopus
  28. A. N. Makheja and J. M. Bailey, “Antiplatelet constituents of garlic and onion,” Agents and Actions, vol. 29, no. 3-4, pp. 360–363, 1990. View at Google Scholar · View at Scopus
  29. E. Block, “The chemistry of garlic and onions,” Scientific American, vol. 25, pp. 94–99, 1985. View at Google Scholar · View at Scopus
  30. A. Q. Shah, T. G. Kazi, M. B. Arain et al., “Optimization of ultrasonic-assisted acid extraction of mercury in muscle tissues of fishes using multivariate strategy,” Journal of AOAC International, vol. 92, no. 5, pp. 1580–1586, 2009. View at Google Scholar · View at Scopus
  31. A. Q. Shah, T. G. Kazi, J. A. Baig et al., “Determination of total mercury in muscle tissues of marine fish species by ultrasonic assisted extraction followed by cold vapor atomic absorption spectrometry,” Pakistan Journal of Analytical & Environmental Chemistry, vol. 11, pp. 12–17, 2010. View at Google Scholar
  32. Y. Nergiz, “An experimental investigation of histopathological changes seen in the liver of rats administered aspirin in various dosage and duration,” Dicle Üniversitesi Tıp Fakültesi Dergisi, vol. 12, pp. 161–169, 1985. View at Google Scholar
  33. H. Çam, The Efficiency of capheic acid phenethyl es ter on prevention of aspirin induced gastritis in rats [Specialty thesis], University of Süleyman Demirel upon Internal Medicine Department, Isparta, Turkey, 2007.
  34. R. Sehgal and A. B. Saxena, “Toxicity of zinc to a viviparous fish, Lebistes reticulatus (Peters),” Bulletin of Environmental Contamination and Toxicology, vol. 36, no. 1, pp. 888–894, 1986. View at Publisher · View at Google Scholar · View at Scopus
  35. K. V. Sastry and S. K. Subhadra Km., “In vivo effects of cadmium on some enzyme activities in tissues of the freshwater catfish, Heteropneustes fossilis,” Environmental Research, vol. 36, no. 1, pp. 32–45, 1985. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Z. Vosyliene, “The effect of heavy metal on hematological indices,” Acta Zoologica Litvanica Hydrobiologia, vol. 9, pp. 76–82, 1999. View at Google Scholar
  37. A. Valavanidis, T. Vlahogianni, M. Dassenakis, and M. Scoullos, “Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants,” Ecotoxicology and Environmental Safety, vol. 64, no. 2, pp. 178–189, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. A. M. Hilmy, M. B. Shabana, and A. Y. Daabees, “Effects of cadmium toxicity upon the in vivo and in vitro activity of proteins and five enzymes in blood serum and tissue homogenates of Mugil cephalus,” Comparative Biochemistry and Physiology C, vol. 81, no. 1, pp. 145–153, 1985. View at Publisher · View at Google Scholar · View at Scopus
  39. M. V. Malhilakath, C. Pereira, E. G. Grau, and G. K. Iwama, “Metabolic responses associated with confinement stress in tilapia: the role of cortisol,” Comparative Biochemistry and Physiology C, vol. 1, pp. 89–95, 1997. View at Google Scholar · View at Scopus
  40. L. Acerete, J. C. Balasch, E. Espinosa, A. Josa, and L. Tort, “Physiological responses in Eurasian perch (Perca fluviatilis, L.) subjected to stress by transport and handling,” Aquaculture, vol. 237, no. 1–4, pp. 167–178, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. B. C. Small, “Effect of isoeugenol sedation on plasma cortisol, glucose, and lactate dynamics in channel catfish Ictalurus punctatus exposed to three stressors,” Aquaculture, vol. 238, no. 1–4, pp. 469–481, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. A. K. Biswas, M. Seoka, K. Takii, M. Maita, and H. Kumai, “Stress response of red sea bream Pagrus major to acute handling and chronic photoperiod manipulation,” Aquaculture, vol. 252, no. 2–4, pp. 566–572, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. A. E. Dönmez, M. Kalay, F. Özkan, and C. E. Koyuncu, “The variations in the some blood parameters caused by therapeutic concentration of FMC and malachite green in Oreochromis niloticus (L., 1758),” Ege University Journal of Fisheries and Aquatic Sciences, vol. 23, pp. 61–64, 2006. View at Google Scholar
  44. A. D. Dange, “Changes in carbohydrate metabolism in tilapia oreochromis mossambicus, during short-term exposure to different types of pollutants,” Environmental Pollution A, vol. 41, no. 2, pp. 165–177, 1986. View at Google Scholar · View at Scopus
  45. S. Karataş, C. Erdem, and B. Cicik, “Effects of cadmium on levels of sera aspartate aminotransferase alanine aminotransferase and glucose in Cyprinus carpio (L. 1758),” Ekoloji, vol. 14, pp. 18–23, 2005. View at Google Scholar
  46. S. Chun and M. Oh, “Health assesestment by hematological studies and blood chemistries,” University of Pusan Upon Institute of Marine Sciences, vol. 21, pp. 205–215, 1989. View at Google Scholar
  47. A. G. Heath, Water Pollution and Fish Physiology, CRC Press, New York, NY, USA, 1995.