Abstract

We characterize the Schur multipliers of scalar type acting on scattered classes of infinite matrices.


In [1], Schur introduced a new product between two matrices ๐ด=(๐‘Ž๐‘—๐‘˜) and ๐ต=(๐‘๐‘—๐‘˜) of the same size, finite or infinite. This product, known in the literature as the Schur product or Hadamard product, is defined to be the matrix of elementwise products๎€ท๐‘Ž๐ดโˆ—๐ต=๐‘—๐‘˜๐‘๐‘—๐‘˜๎€ธ.(1)

This concept was used in different areas of analysis as complex function theory, Banach spaces, operator theory, and multivariate analysis.

Bennett studied in [2] the behaviour, under Schur multiplication, of the norm โ€–โ‹…โ€–๐‘,๐‘ž,1โ‰ค๐‘,๐‘žโ‰คโˆž,โ€–๐ดโ€–๐‘โ‹…๐‘ž=supโ€–๐‘ฅโ€–๐‘โ‰ค1โŽ›โŽœโŽœโŽ๎“๐‘—|||||๎“๐‘˜๐‘Ž๐‘—๐‘˜๐‘ฅ๐‘˜|||||๐‘žโŽžโŽŸโŽŸโŽ 1/๐‘ž.(2)

In particular, he was interested in characterizing the (๐‘,๐‘ž)-multipliers: the matrices ๐‘€ for which ๐‘€โˆ—๐ด maps โ„“๐‘ into โ„“๐‘ž whenever ๐ด does.

In his paper it is proved a theorem about Schur multipliers which are Toeplitz matrices, that is about the matrices of the formโŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ๐‘Ž๐ด=0๐‘Ž1๐‘Ž2๐‘Ž3โ‹ฏ๐‘Žโˆ’1๐‘Ž0๐‘Ž1๐‘Ž2โ‹ฏ๐‘Žโˆ’2๐‘Žโˆ’1๐‘Ž0๐‘Ž1โ‹ฏ๐‘Žโˆ’3๐‘Žโˆ’2๐‘Žโˆ’1๐‘Ž0โ‹ฏโŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ โ‹ฎโ‹ฑโ‹ฑโ‹ฑโ‹ฑ,(3) where (๐‘Ž๐‘—)โˆž๐‘—=โˆ’โˆž is a sequence of complex numbers.

Theorem 8.1 in [2] reads as follows.

Theorem B. A Toeplitz matrix ๐ด is a Schur multiplier if and only if โˆ‘๐œ‡=โˆž๐‘—=โˆ’โˆž๐‘Ž๐‘—๐‘’๐‘–๐‘—๐‘ก is a bounded Borel measure on [0,2๐œ‹).

This fact leads naturally to the idea of identifying the Schur multipliers with the noncommutative bounded Borel measures, see, for example, [3].

We denote by ๐‘€(โ„“2) the space of all (2,2) Schur multipliers from ๐ต(โ„“2) into ๐ต(โ„“2), where ๐ต(โ„“2) is, as usual, the Banach space of linear and bounded operators on โ„“2 with the usual operator norm.

The space ๐‘€(โ„“2) endowed with norm โ€–๐ดโ€–๐‘€(โ„“2)=supโ€–๐ตโ€–2๐ต(โ„“)โ‰ค1โ€–๐ดโˆ—๐ตโ€–๐ต(โ„“2) becomes a Banach space.

Since we work with different quasi-Banach spaces of matrices ๐‘‹,๐‘Œ we use the notation (๐‘‹,๐‘Œ) for the space of all Schur multipliers from ๐‘‹ into ๐‘Œ equipped with the quasi-normโ€–๐ดโ€–(๐‘‹,๐‘Œ)=supโ€–๐ตโ€–๐‘Œโ‰ค1โ€–๐ดโˆ—๐ตโ€–๐‘‹.(4)

In this way (๐‘‹,๐‘Œ) becomes a quasi-Banach.

In [2] Bennett raised the problem of characterizing the Hankel matrices which are Schur multipliers.

We recall that a matrix ๐ด is called a Hankel matrix if it is defined by a sequence (๐‘Ž๐‘—)โˆž๐‘—=1 of complex numbers in the following way:โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ๐‘Ž๐ด=0๐‘Ž1๐‘Ž2๐‘Ž3โ‹ฏ๐‘Ž1๐‘Ž2๐‘Ž3๐‘Ž4โ‹ฏ๐‘Ž2๐‘Ž3๐‘Ž4๐‘Ž5โ‹ฏ๐‘Ž3๐‘Ž4๐‘Ž5๐‘Ž6โ‹ฏโŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ โ‹ฎโ‹ฎโ‹ฎโ‹ฎ.(5)

Pisier in [4] solved the above problem. He proved the following theorem.

Theorem P. A Hankel matrix is a Schur multiplier if and only if the Fourier multiplier โˆ‘โˆž๐‘›=0๐‘ฅ๐‘›๐‘’intโ†’โˆ‘โˆž๐‘›=0๐‘Ž๐‘›๐‘ฅ๐‘›๐‘’int maps boundedly ๐ป1(๐‘†1) into itself.

Here ๐ป1(๐‘†1) is the Hardy space of the Schatten class ๐‘†1-valued analytic functions, endowed with the norm โ€–๐‘“โ€–๐ป1(๐‘†1)โˆซ=(1/2๐œ‹)02๐œ‹โ€–โˆ‘โˆž๐‘›=0๐ด๐‘›๐‘’intโ€–๐‘†1๐‘‘๐‘ก<โˆž. For the definition of the Schatten classes ๐‘†๐‘, see, for example, [5].

In [5], Aleksandrov and Peller characterized the Toeplitz matrices which are Schur multipliers for ๐‘†๐‘, 0<๐‘<1. They proved the following theorem.

Theorem AP. Let 0<๐‘<1. A Toeplitz matrix ๐‘‡ given by the complex sequence (๐‘ก๐‘—)โˆž๐‘—=โˆ’โˆž belongs to (๐‘†๐‘,๐‘†๐‘) if and only if there exists a measure ๐œ‡โˆˆ๐‘€๐‘ with the Fourier coefficients ๎๐œ‡(๐‘—)=๐‘ก๐‘—. Moreover, in this case โ€–๐‘‡โ€–(๐‘†๐‘,๐‘†๐‘)=โ€–๐œ‡โ€–๐‘€๐‘,(6) where ๐‘€๐‘โˆ‘={๐œ‡โˆถ๐•‹โ†’โ„‚โˆฃ๐œ‡=๐‘—๐›ผ๐‘—๐›ฟ๐‘ก๐‘—,๐‘ก๐‘—โˆˆ๐•‹,๐‘ก๐‘—๐‘‘๐‘–๐‘ ๐‘ก๐‘–๐‘›๐‘๐‘ก๐‘๐‘œ๐‘–๐‘›๐‘ก๐‘ },โ€–๐œ‡โ€–๐‘€๐‘โˆ‘=(๐‘—|๐›ผ๐‘—|๐‘)1/๐‘<โˆž, and ๐›ฟ๐‘ก is the Dirac measure concentrated at the point ๐‘กโˆˆ๐•‹.

The above-mentioned papers [4, 5] show that a complete description of general Schur multipliers, at least, either for ๐ต(โ„“2) or ๐‘†๐‘,0<๐‘โ‰ค1, is a difficult target. In this way it is natural to consider and study other classes of Schur multipliers than those which are Toeplitz matrices. In [6], the following notation, more apropriate for our aims, for the entries of a matrix ๐ต was introduced. Namely, we put๐‘๐‘™๐‘˜=๎‚ป๐‘๐‘™,๐‘™+๐‘˜๐‘,๐‘˜โ‰ฅ0,๐‘™=1,2,โ€ฆ,๐‘™โˆ’๐‘˜,๐‘™,๐‘˜<0,๐‘™=1,2,โ€ฆ,(7) and write ๐ต=(๐‘๐‘™๐‘˜)๐‘™โ‰ฅ1,๐‘˜โˆˆโ„ค.

Let ๐ต(๐‘™)=(๐‘๐‘š๐‘˜)๐‘˜โˆˆโ„ค,๐‘šโ‰ฅ1, where ๐‘™=1,2,3,โ€ฆ, be the matrix given by๐‘๐‘š๐‘˜=๎‚ป๐‘๐‘™๐‘˜,if๐‘š=๐‘™,0,if๐‘šโ‰ ๐‘™.(8)

We call the matrix ๐ต(๐‘™), the ๐‘™th corner matrix associated to ๐ต.

Now, we associate to each matrix ๐ต๐‘™ a periodical distribution on ๐•‹, denoted by ๐‘“๐‘™, such that ๐‘๐‘™๐‘˜=๎๐‘“๐‘™(๐‘˜), and we identify the matrix ๐ต=(๐ต(๐‘™))๐‘™โˆˆโ„•โˆ— with the sequence of associated distributions (๐‘“๐‘™)๐‘™โˆˆโ„•โˆ—.

Then for the sequence ๐›ผ=(๐›ผ1,๐›ผ2,โ€ฆ) and the matrix ๐ต=(๐‘“๐‘™)๐‘™โˆˆโ„•โˆ—, we denote by ๐›ผโŠ™๐ต the matrix given by (๐›ผ๐‘™๐‘“๐‘™)๐‘™โˆˆโ„•โˆ—.

In particular, if ๐ต is a Toeplitz matrix (๐ตโˆˆ๐’ฏ) and if ๐›ผ is the constant sequence then ๐›ผโŠ™๐ต coincides with the matrix ๐›ผ๐ต.

Hence, if [๐›ผ] is the matrix[๐›ผ]=โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ๐›ผ1๐›ผ1๐›ผ1โ‹ฏ๐›ผ1๐›ผ2๐›ผ2โ‹ฑ๐›ผ1๐›ผ2๐›ผ3โ‹ฑโŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ โ‹ฎโ‹ฑโ‹ฑโ‹ฑ(9) it is clear that ๐›ผโŠ™๐ต=[๐›ผ]โˆ—๐ต.

We define ๐‘š๐‘  to be the space of all sequences ๐›ผ such that ๐›ผโŠ™๐ตโˆˆ๐ต(โ„“2) for all ๐ตโˆˆ๐ต(โ„“2), or equivalently [๐›ผ]โˆˆ๐‘€(โ„“2).

On ๐‘š๐‘  we consider the norm โ€–๐›ผโ€–๐‘š๐‘ =โ€–[๐›ผ]โ€–๐‘€(โ„“2). Then ๐‘š๐‘  is a unital commutative Banach algebra with respect to the usual multiplication of sequences. As it was observed in [6], the multiplication of a function with a scalar corresponds to the multiplication โŠ™ of a sequence and an infinite matrix.

We call the matrices [๐›ผ]โ€‰โ€‰scalar matrices. In this context, in [6] a theorem of Haarโ€™s type for infinite matrices was proved. The product โŠ™ appeared also in [7] in other contexts.

An important role in applications is played by the upper triangular projection applied to the matrix [๐›ผ]. For an infinite matrix ๐ด=(๐‘Ž๐‘–๐‘—)๐‘–โ‰ฅ1,๐‘—โ‰ฅ1, the upper triangular projection is๐‘ƒ๐‘‡๎‚ป๐‘Ž(๐ด)=๐‘–,๐‘—,if๐‘–โ‰ค๐‘—,0,otherwise.(10)

A sequence ๐‘=(๐‘๐‘›)๐‘›โ‰ฅ1 belongs to ๐‘๐‘š๐‘  if and only if๐ต={๐‘}=๐‘ƒ๐‘‡([๐‘]๎€ทโ„“)โˆˆ๐‘€2๎€ธ.(11)

The space ๐‘๐‘š๐‘  endowed with the norm โ€–๐‘โ€–=โ€–{๐‘}โ€–๐‘€(โ„“2) becomes a Banach algebra with respect to the usual product of sequences.

In [6] there were given sufficient and necessary conditions in order for matrices of the form [๐›ผ] or {๐›ผ}, that is,โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ๐›ผ{๐›ผ}=1๐›ผ1๐›ผ1โ‹ฏ0๐›ผ2๐›ผ2โ‹ฑ00๐›ผ3โ‹ฑโŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ โ‹ฎโ‹ฑโ‹ฑโ‹ฑ,(12) to be Schur multipliers. The following result was proved.

Theorem BLP1. Let ๐‘=(๐‘๐‘›)๐‘›โ‰ฅ1 be a complex sequence. (1)If (๐‘–๐‘›)๐‘›โ‰ฅ1 is a strictly increasing sequence of natural numbers with ๐‘–1=0, and ๐‘ง๐‘–๐‘›=max๐‘–๐‘›<๐‘˜โ‰ค๐‘–๐‘›+1|๐‘๐‘˜|, then there is a constant ๐‘…>0 such thatโ€–โ€–{๐‘}๐‘€(โ„“2)โ‰ค๐‘…inf(๐‘–๐‘›)๐‘›โ‰ฅ1๎‚†โ€–โ€–๎€ท๐‘ง๐‘–๐‘›๎€ธ๐‘›โ‰ฅ1โ€–โ€–2+โ€–โ€–๎€ท๐‘ง๐‘–๐‘›๎€ท๐‘–log๐‘›+1โˆ’๐‘–๐‘›๎€ธ๎€ธ๐‘›โ€–โ€–โˆž๎‚‡.(13)(2)If ๐‘โˆˆ๐‘๐‘š๐‘  thensup๐‘›โ‰ฅ1;๐‘โ‰ฅ1(log๐‘›)2๐‘›๐‘›+๐‘๎“๐‘˜=๐‘||๐‘๐‘˜||2<โˆž.(14)(3)If (|๐‘๐‘˜|)๐‘˜โ‰ฅ1 is a decreasing sequence, then ๐‘โˆˆ๐‘๐‘š๐‘  if and only if |๐‘๐‘˜|=๐’ช(1/log๐‘˜).

As an immediate consequence we have the following.

Corollary 1. (1) One has โ„“2โŠ‚๐‘š๐‘ โŠ‚โ„“โˆž.
(2) One has {(๐‘๐‘›)๐‘›โ‰ฅ1โˆฃ|๐‘๐‘›|=๐’ช(1/log๐‘›)}โŠ‚๐‘š๐‘ .

A set of sufficient conditions in order for a matrix of the type [๐›ผ] to be a Schur multiplier is given in [6], namely, the following theorem was proved.

Theorem BLP2. Let ๐‘=(๐‘๐‘›)๐‘›โ‰ฅ1 a complex sequence. Then, (1)if sup๐‘›โ‰ฅ1โˆ‘๐‘›๐‘—=1|๐‘๐‘—โˆ’๐‘๐‘›|2<โˆž, then ๐‘โˆˆ๐‘š๐‘ ;(2)if โ€–๐‘โ€–๐ต๐‘‰โ„•=|๐‘1โˆ‘|+โˆž๐‘›=1|๐‘๐‘›+1โˆ’๐‘๐‘›|<โˆž then ๐‘โˆˆ๐‘š๐‘ .

It is well known that ๐‘€(โ„“2) coincides with (๐‘†1,๐‘†1), the space of all Schur multipliers from ๐‘†1 into ๐‘†1, see, for example, [4]. Using this fact we give a simpler proof of the first statement of Corollary 1.

Theorem 2. Let ๐‘=(๐‘๐‘›)๐‘›โ‰ฅ1โˆˆโ„“2. Then ๐‘โˆˆ๐‘๐‘š๐‘ .

Proof. By using the Schmidt decomposition of a matrix ๐ด, it is enough to show that ๐ดโˆ—{๐‘}โˆˆ๐‘†1 for a matrix ๐ด of rank 1. Let ๐ด=๐›ผโŠ—๐›ฝ with ๐›ผ=(๐›ผ๐‘›)๐‘›โ‰ฅ1โˆˆโ„“2 and ๐›ฝ=(๐›ฝ๐‘›)๐‘›โ‰ฅ1โˆˆโ„“2.
We have โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ๐›ผ๐ดโˆ—{๐‘}=1๐›ฝ1๐›ผ1๐›ฝ2๐›ผ1๐›ฝ3โ‹ฏ๐›ผ2๐›ฝ1๐›ผ2๐›ฝ2๐›ผ2๐›ฝ3โ‹ฏ๐›ผ3๐›ฝ1๐›ผ3๐›ฝ2๐›ผ3๐›ฝ3โ‹ฏโŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ โˆ—โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ๐‘โ‹ฎโ‹ฎโ‹ฎ1๐‘1๐‘1๐‘1โ‹ฏ0๐‘2๐‘2๐‘2โ‹ฑ00๐‘3๐‘3โ‹ฑโŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ =โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ๐‘โ‹ฎโ‹ฑโ‹ฑโ‹ฑโ‹ฑ1๐›ผ1๐›ฝ1๐‘1๐›ผ1๐›ฝ2๐‘1๐›ผ1๐›ฝ3โ‹ฏ0๐‘2๐›ผ2๐›ฝ2๐‘2๐›ผ2๐›ฝ3โ‹ฏ00๐‘3๐›ผ3๐›ฝ3โ‹ฏโŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ .โ‹ฎโ‹ฎโ‹ฎ(15)
By the definition of ๐‘†1 and Cauchy-Schwartz inequality we get โ€–๐ดโˆ—{๐‘}โ€–๐‘†1โ‰คโˆž๎“๐‘—=1โ€–โ€–๎€ท๐›ผ๐‘—๐‘๐‘—๐›ฝ๐‘—+๐‘˜๎€ธโˆž๐‘˜=0โ€–โ€–โ„“2=โˆž๎“๐‘—=1๎ƒฉโˆž๎“๐‘˜=0||๐›ผ๐‘—๐‘๐‘—||2||๐›ฝ๐‘—+๐‘˜||2๎ƒช1/2โ‰ค๎ƒฉโˆž๎“๐‘—=1||๐›ผ๐‘—๐‘๐‘—||๎ƒชโ€–โ€–๐›ฝ๐‘—โ€–โ€–โ„“2โ‰คโ€–๐›ผโ€–โ„“2โ€–๐›ฝโ€–โ„“2โ€–๐‘โ€–โ„“2=โ€–๐‘โ€–โ„“2โ€–๐ดโ€–๐‘†1,(16) that is, โ€–๐ดโ€–๐‘€(โ„“2)โ‰คโ€–๐‘โ€–โ„“2 and the proof is complete.

We characterize now the upper triangular scalar matrices which are Schur multipliers, from the Hardy space ๐ป2, respectively, from the Schatten class ๐‘†2 into ๐ต(โ„“2).

Theorem 3. (1) Let ๐ป2 be the Hardy space of Toeplitz matrices generated by the classical Hardy space of functions. Then an upper triangular matrix ๐ด={๐›ผ} belongs to (๐ป2,๐ต(โ„“2)) if and only if ๐›ผโˆˆโ„“2. Moreover, one has equality of the norms.
(2) Let ๐‘‡2 be the space of all upper triangular Hilbert-Schmidt matrices. Then {๐›ผ}โˆˆ(๐‘‡2,๐ต(โ„“2)) if and only if ๐›ผโˆˆโ„“โˆž.

Proof. (1) We use the following identity proved in [6]: โ€–๐ตโ€–๐ต(โ„“2)=supโ€–โ„Žโ€–2โ‰ค1;โ„Žโˆˆ๐ป20[]0,1โŽ›โŽœโŽœโŽโˆž๎“๐‘˜=1|||||๎€œ10โˆž๎“๐‘—=๐‘˜๐‘๐‘˜๐‘—๐‘’2๐œ‹๐‘–๐‘—๐‘กโ„Ž|||||(โˆ’๐‘ก)๐‘‘๐‘ก2โŽžโŽŸโŽŸโŽ 1/2,(17) where ๐ต is an upper triangular matrix ๐ต=(๐‘๐‘˜๐‘—).
Then, if โˆ‘๐‘“(๐‘ก)=โˆž๐‘˜=0๐‘๐‘˜๐‘’2๐œ‹๐‘–๐‘˜๐‘กโˆˆ๐ป2,๐‘กโˆˆ[0,1], ๐น is the Toeplitz matrix associated to ๐‘“ (i.e., ๐น is given by (๐‘๐‘˜)โˆž๐‘˜โ‰ฅ0), and ๐›ผโˆˆโ„“2, we have โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ๐›ผ๐นโˆ—{๐›ผ}=0๐‘0๐›ผ0๐‘1๐›ผ0๐‘2๐›ผ0๐‘3โ‹ฏ0๐›ผ1๐‘0๐›ผ1๐‘1๐›ผ1๐‘2โ‹ฑ00๐›ผ2๐‘0๐›ผ2๐‘1โ‹ฑโŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ โ‹ฎโ‹ฑโ‹ฑโ‹ฑโ‹ฑโ€–๐นโˆ—{๐›ผ}โ€–๐ต(โ„“2)=supโ€–โ„Žโ€–2โ‰ค1โŽ›โŽœโŽœโŽโˆž๎“๐‘˜=1|||||๎€œ10๐›ผ๐‘˜โˆ’1๎ƒฉโˆž๎“๐‘—=0๐‘๐‘—๐‘’2๐œ‹๐‘–๐‘—๐‘ก๎ƒช|||||โ„Ž(โˆ’๐‘ก)๐‘‘๐‘ก2โŽžโŽŸโŽŸโŽ 1/2=supโ€–โ„Žโ€–2โ‰ค1๎ƒฉโˆž๎“๐‘˜=1||๐›ผ๐‘˜โˆ’1||2๎ƒช1/2|||||๎€œ10๎ƒฉโˆž๎“๐‘—=0๐‘๐‘—๐‘’2๐œ‹๐‘–๐‘—๐‘ก๎ƒช|||||โ„Ž(โˆ’๐‘ก)๐‘‘๐‘ก=โ€–๐›ผโ€–โ„“2โ€–๐‘“โ€–๐ป2.(18)
Hence โ€–{๐›ผ}โ€–(๐ป2,๐ต(โ„“2))=โ€–๐›ผโ€–โ„“2, and this completes the proof.
(2) Let ๐›ผโˆˆโ„“โˆž and โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ๐‘๐ถ=11๐‘12๐‘13โ‹ฏ0๐‘22๐‘23โ‹ฏ00๐‘33โ‹ฏโŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ โ‹ฎโ‹ฎโ‹ฎโˆˆ๐‘‡2.(19) Using formula (17) and Cauchy-Schwartz inequality we get โ€–โ€–{๐›ผ}โˆ—๐ถ๐ต(โ„“2)โ‰คโŽ›โŽœโŽœโŽโˆž๎“๐‘˜=1||๐›ผ๐‘˜โˆ’1||2supโ€–โ„Žโ€–2โ‰ค1|||||๎€œ10๎ƒฉ๎“๐‘—โ‰ฅ๐‘˜๐‘๐‘˜๐‘—๐‘’2๐œ‹๐‘–๐‘—๐‘ก๎ƒช|||||โ„Ž(โˆ’๐‘ก)2โŽžโŽŸโŽŸโŽ 1/2โ‰ค๎ƒฉโˆž๎“๐‘˜=1||๐›ผ๐‘˜โˆ’1||2๎ƒฉ๎“๐‘—โ‰ฅ๐‘˜||๐‘๐‘˜๐‘—||2๎ƒช๎ƒช1/2โ‰ค๎‚ตsup๐‘˜โ‰ฅ0||๐›ผ๐‘˜||๎‚ถ๎ƒฉโˆž๎“๐‘˜=1๎“๐‘—โ‰ฅ๐‘˜||๐‘๐‘˜๐‘—||2๎ƒช1/2=โ€–๐›ผโ€–โ„“โˆžโ€–๐ถโ€–๐‘‡2.(20)
Hence {๐›ผ}โˆˆ(๐‘‡2,๐ต(โ„“2)), and this proves the first part of the theorem.
Conversely, let {๐›ผ}โˆˆ(๐‘‡2,๐ต(โ„“2)), that is, ๐ถโˆ—{๐›ผ}โˆˆ๐ต(โ„“2) for all ๐ถโˆˆ๐‘‡2 and take ๐ถ=๐ถ0, that is, the matrix ๐ถ is reduced to main diagonal. It is clear that the sequence of entries of this diagonal belongs to โ„“2. Consequently the sequence (๐›ผ๐‘˜โˆ’1๐‘๐‘˜๐‘˜)๐‘˜โ‰ฅ0 belongs to โ„“โˆž for every sequence (๐‘๐‘˜๐‘˜)โˆž๐‘˜โ‰ฅ1โˆˆโ„“2. Hence (๐›ผ๐‘˜)โˆž๐‘˜=0โˆˆโ„“โˆž, and the proof is complete.

Next we use the important results of Bennett proved in [8], in order to characterize the Schur multipliers of scalar type for some spaces of lower triangular infinite matrices contained in the Schatten classes ๐‘†๐‘,0<๐‘<โˆž. We denote these spaces by โ„’๐’ฏ๐‘†๐‘.

Next we get a general description of upper triangular Schur multipliers of scalar type for different quasi-Banach spaces.

In order to state the following result we need to recall some definitions (see [9]).

Let ๐Ÿ be the space of all sequences with a finite number of nonzero elements. A norm ฮฆ on ๐Ÿ is called symmetric if ฮฆ(๐‘Ž)=ฮฆ(๐‘Žโˆ—), for all ๐‘Žโˆˆ๐Ÿ, that is, if ฮฆ is invariant to permutations and to applications ๐‘Ž๐‘›โ†’๐‘’๐‘–๐œƒ๐‘›๐‘Ž๐‘›, where ๐œƒ๐‘› is a sequence of real numbers. Here ๐‘Žโˆ—=(๐‘Žโˆ—๐‘›)โˆž๐‘›=1 is the decreasing rearrangement of the sequence (๐‘Ž๐‘›) which converges to 0.

We say that the sequence (๐‘Ž๐‘›)๐‘› belongs to the space ๐‘ ฮฆ, if and only if lim๐‘›โ†’โˆžฮฆ(๐‘Ž1,โ€ฆ,๐‘Ž๐‘›,0,0,โ€ฆ)=ฮฆ(๐‘Ž) exists.

We denote by ๐‘†ฮฆ the space of all compact operators ๐ด on โ„“2 with the sequence of their singular numbers (๐œ‡๐‘›(๐ด)) belonging to ๐‘ ฮฆ. For ๐ดโˆˆ๐‘†ฮฆ we put ฮฆ(๐ด)=ฮฆ((๐œ‡๐‘›(๐ด))๐‘›).

Then the following noncommutative Hรถlder type inequality proved in [9] holds.

Theorem AH. Let ฮฆ1,ฮฆ2,ฮฆ3 be symmetric norms such that if ๐‘Žโˆˆ๐‘ ฮฆ2,๐‘โˆˆ๐‘ ฮฆ3 then ๐‘Ž๐‘โˆˆ๐‘ ฮฆ1 and ฮฆ1(๐‘Ž๐‘)โ‰คฮฆ2(๐‘Ž)ฮฆ3(๐‘).(21) If ๐ดโˆˆ๐‘†ฮฆ2,๐ตโˆˆ๐‘†ฮฆ3, then ๐ด๐ตโˆˆ๐‘†ฮฆ1 and ฮฆ1(๐ด๐ต)โ‰คฮฆ2(๐ด)ฮฆ3(๐ต).

Using this inequality we can state the following interesting result.

Theorem 4. Let ๐‘ ฮฆ1=๐‘ ฮฆ2๐‘ ฮฆ3 (i.e., for each ๐›ผโˆˆ๐‘ ฮฆ1, there exist ๐›ฝโˆˆ๐‘ ฮฆ2,๐›พโˆˆ๐‘ ฮฆ3 such that ๐›ผ=๐›ฝ๐›พ, and ฮฆ1(๐›ผ)โ‰ˆinf๐›ผ=๐›ฝ๐›พฮฆ2(๐›ฝ)ฮฆ3(๐›พ)). Then a scalar matrix [๐›ผ]โˆˆ(โ„’๐’ฏ๐‘†ฮฆ2,โ„’๐’ฏ๐‘†ฮฆ1) if and only if ๐›ผโˆˆ๐‘ ฮฆ3.

Proof. Let first ๐ดโˆˆโ„’๐’ฏ๐‘†ฮฆ1 and ๐›ผโˆˆ๐‘ ฮฆ3. Then it is clear that [๐›ผ]๐ดโˆ—=๐ดโ‹…๐ท๐›ผ,(22) where ๐ท๐›ผ=โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ๐›ผ100โ‹ฏ0๐›ผ20โ‹ฑ00๐›ผ3โ‹ฑโŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ โ‹ฎโ‹ฑโ‹ฑโ‹ฑ.(23)
By Theorem AH it follows that [๐›ผ]โ€–โ€–๐ดโˆ—๐‘†ฮฆ1โ‰คโ€–โ€–๐ดโ‹…๐ท๐›ผโ€–โ€–๐‘†ฮฆ1โ‰คโ€–๐ดโ€–๐‘†ฮฆ2โ€–โ€–๐ท๐›ผโ€–โ€–๐‘†ฮฆ3โ‰คโ€–๐ดโ€–๐‘†ฮฆ2โ€–๐›ผโ€–๐‘ ฮฆ3.(24) Hence [๐›ผ]โˆˆ(โ„’๐’ฏ๐‘†ฮฆ2,โ„’๐’ฏ๐‘†ฮฆ1), and this completes the first part of the proof.
For the reverse implication, take ๐ด to be the main diagonal with the entries (๐‘Ž๐‘—๐‘—)โˆž๐‘—=1โˆˆ๐‘ ฮฆ2 and [๐›ผ]โˆˆ(โ„’๐’ฏ๐‘†ฮฆ2,โ„’๐’ฏ๐‘†ฮฆ1).
Then [๐›ผ]๐ดโˆ—=๐ดโ‹…๐ท๐›ผ=โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽ๐‘Ž11๐›ผ100โ‹ฏ0๐‘Ž22๐›ผ20โ‹ฑ00๐‘Ž33๐›ผ3โ‹ฑโŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ โ‹ฎโ‹ฑโ‹ฑโ‹ฑโˆˆ๐‘†ฮฆ1(25) and we get that (๐‘Ž๐‘–๐‘–๐›ผ๐‘–)โˆž๐‘–=1โˆˆ๐‘ ฮฆ1 for all sequences (๐‘Ž๐‘—๐‘—)โˆž๐‘—=1โˆˆ๐‘ ฮฆ2. Since ๐‘ ฮฆ1=๐‘ ฮฆ2๐‘ ฮฆ3, it follows that ๐›ผโˆˆ๐‘ ฮฆ3, and this completes the proof of the theorem.

Let ๐‘ค=(๐‘ค๐‘›) be a positive decreasing sequence of numbers. Of course the Lorentz space of sequences โ„“๐‘,๐‘ค, 0<๐‘โ‰คโˆž, is a space of the previous type ๐‘ ฮฆ, see, for example, [9]. By the well-known fact that โ„“๐‘,๐‘คโ‹…โ„“๐‘ž,๐‘ค=โ„“๐‘Ÿ,๐‘ค, for 1/๐‘+1/๐‘ž=1/๐‘Ÿ;0<๐‘,๐‘ž,๐‘Ÿ<โˆž we get the following result.

Corollary 2. (1) Let 1/๐‘+1/๐‘ž=1/๐‘Ÿ,0<๐‘,๐‘ž,๐‘Ÿ<โˆž. Then [๐›ผ]โˆˆ(๐‘†๐‘,๐‘†๐‘Ÿ) if and only if ๐›ผโˆˆโ„“๐‘ž.
(2) Let ๐‘ค๐‘› be a decreasing positive sequence, and let 0<๐‘, ๐‘ž<โˆž, be such that 1/๐‘+1/๐‘ž=1. Then [๐›ผ]โˆˆ(๐‘†๐‘,๐‘ค,๐‘†1,๐‘ค) if and only if ๐›ผโˆˆโ„“๐‘ž,๐‘ค, where โ„“๐‘,๐‘ค is the weighted Lorentz space of sequences.

We call the Bergman-Schatten space of order ๐‘, 0<๐‘<โˆž, and we denote by ๐ฟ๐‘๐‘Ž(โ„“2) the space of all upper triangular matrices ๐ด such that โ€–๐ดโ€–๐ฟ๐‘๐‘Ž(โ„“2)โˆซ=(10โ€–โˆ‘โˆž๐‘˜=0๐ด๐‘˜๐‘Ÿ๐‘˜โ€–๐‘๐‘†๐‘2๐‘Ÿ๐‘‘๐‘Ÿ)1/๐‘<โˆž. See, for example, [10] for further notations and details.

By Hรถlderโ€™s inequality we get the following result.

Theorem 6. Let 1โ‰ค๐‘<โˆž. Then [๐›ผ]โˆˆ(๐ฟ๐‘๐‘Ž(โ„“2),๐ฟ1๐‘Ž(โ„“2)) if and only if ๐›ผโˆˆโ„“๐‘ž, where 1/๐‘+1/๐‘ž=1.

Proof. Let ๐ดโˆˆ๐ฟ๐‘๐‘Ž(โ„“2) and ๐›ผโˆˆโ„“๐‘ž. We clearly have that ๐ดโˆ—[๐›ผ]=๐ท๐›ผโ‹…๐ด. By Theorem AH we get [๐›ผ]โ€–โ€–๐ดโˆ—๐ฟ1๐‘Ž(โ„“2)=๎€œ10โ€–โ€–๐ท๐›ผโ€–โ€–โ‹…๐ด(๐‘Ÿ)๐‘†1โ‰ค๎‚ต๎€œ2๐‘Ÿ๐‘‘๐‘Ÿ10โ€–๐ด(๐‘Ÿ)โ€–๐‘๐‘†๐‘๎‚ถ2๐‘Ÿ๐‘‘๐‘Ÿ1/๐‘โ€–๐›ผโ€–โ„“๐‘ž=โ€–๐ดโ€–๐ฟ๐‘๐‘Ž(โ„“2)โ€–๐›ผโ€–โ„“๐‘ž,(26) that is, [๐›ผ]โˆˆ(๐ฟ๐‘๐‘Ž(โ„“2),๐ฟ1๐‘Ž(โ„“2)), and this completes the first part of the proof.
Conversely, let [๐›ผ]โˆˆ(๐ฟ๐‘๐‘Ž(โ„“2),๐ฟ1๐‘Ž(โ„“2)). By taking ๐ด=๐ด0=(๐‘Ž๐‘—๐‘—)โˆž๐‘—=1โˆˆ๐ฟ๐‘๐‘Ž(โ„“2), that is, for (๐‘Ž๐‘—๐‘—)๐‘—โˆˆโ„“๐‘, we get [๐›ผ]=โŽ›โŽœโŽœโŽœโŽœโŽ๐›ผ๐ดโˆ—1๐‘Ž110โ‹ฏ0๐›ผ2๐‘Ž22โ‹ฑโŽžโŽŸโŽŸโŽŸโŽŸโŽ โ‹ฎโ‹ฑโ‹ฑโˆˆ๐ฟ1๐‘Ž๎€ทโ„“2๎€ธ,(27) or, equivalently, (๐›ผ๐‘—๐‘Ž๐‘—๐‘—)๐‘—โˆˆโ„“1. Hence by Hรถlderโ€™s inequality it follows that (๐›ผ๐‘—)๐‘—โˆˆโ„“๐‘ž, and the proof is complete.

Using the results of Bennett, proved in [8] we can also describe the Schur multipliers of scalar type also for others quasi-Banach spaces of matrices. The spaces of sequences ๐‘‘(๐š,๐‘), ๐‘”(๐š,๐‘), and ces(๐‘) were defined in [8].

We denote now by ๐‘‘๐‘ž๐‘€(๐š,๐‘),๐‘”๐‘ž๐‘€(๐š,๐‘),ces๐‘ž๐‘€(๐‘), and โ„“๐‘ž๐‘€(๐‘) the spaces of upper triangular infinite matrices โˆ‘๐ด=โˆž๐‘˜=0๐ด๐‘˜, with all the sequences on the diagonals belonging to ๐‘‘(๐š,๐‘) (resp., ๐‘”(๐š,๐‘),ces(๐‘), โ„“๐‘,) and such that โˆ‘โ€–๐ดโ€–=(๐‘˜โ€–๐ด๐‘˜โ€–๐‘ž๐‘‘(๐š,๐‘))1/๐‘ž<โˆž (resp., โˆ‘โ€–๐ดโ€–=(๐‘˜โ€–๐ด๐‘˜โ€–๐‘ž๐‘”(๐š,๐‘))1/๐‘ž<โˆž and so on) with the usual modification for ๐‘ž=โˆž.

Using Theorems 4.5 and 3.8 in [8], we have the following.

Theorem 7. (1) Let 1<๐‘<โˆž. Then ๐›ผโˆˆ๐‘”(๐‘โˆ—), where 1/๐‘+1/๐‘โˆ—=1, if and only if [๐›ผ]โˆˆ(โ„“โˆž๐‘€(๐‘),cesโˆž๐‘€(๐‘)), where ๐‘”(๐‘โˆ—)=๐‘”(๐š,๐‘โˆ—), with ๐š=(1,1,โ€ฆ).
(2)โ€‰โ€‰Let 0<๐‘<โˆž. Then [๐›ผ]โˆˆ(๐‘‘โˆž๐‘€(๐š,๐‘),โ„“โˆž๐‘€(๐‘)) if and only if ๐›ผโˆˆ๐‘”(๐š,๐‘).

Theorem 8. (1) For 1<๐‘<โˆž, [๐›ผ]โˆˆ(โ„“๐‘ž๐‘€(๐‘),ces๐‘ž๐‘€(๐‘)) if and only if ๐›ผโˆˆ๐‘”(๐‘โˆ—).
(2) For 0<๐‘<โˆž, [๐›ผ]โˆˆ(๐‘‘๐‘ž๐‘€(๐š,๐‘),โ„“๐‘ž๐‘€(๐‘)) if and only if ๐›ผโˆˆ๐‘”(๐š,๐‘).

Acknowledgments

This paper was partially supported by the CNCSIS Grant ID-PCE 1905/2008. The author thanks the referee for his/her valuable remarks which improved considerably the presentation of this paper.