Abstract

We estimate the measure of nonconvex total boundedness in terms of simpler quantitative characteristics in the space of measurable functions  𝐿0. A FrΓ©chet-Smulian type compactness criterion for convexly totally bounded subsets of 𝐿0 is established.

1. Introduction

In 1988, Idzik [1] proved that the answer to the well-known Schauder's problem [2, Problem 54]: does every continuous map π‘“βˆΆπΎβ†’πΎβ€‰β€‰defined on a convex compact subset of a Hausdorff topological linear space have a fixed point? is affirmative if 𝐾 is convexly totally bounded.

This notion was introduced by Idzik [1]: a subset 𝐾 of a topological linear space 𝑋 is said to be convexly totally bounded (ctb for short), if for every 0-neighborhood π‘ˆ there are π‘₯1,…,π‘₯π‘›βˆˆπΎ and convex subsets 𝐢1,…,𝐢𝑛 of π‘ˆ such that β‹ƒπΎβŠ†π‘›π‘–=1(π‘₯𝑖+𝐢𝑖). If 𝑋 is locally convex, every convex compact subset of 𝑋 is ctb. This is not true, in general, if 𝑋 is nonlocally convex (see [3–5]).

In 1993, De Pascale et al. [3] defined the measure of nonconvex total boundedness, modelled on Idzik's concept, that may be regarded as the analogue of the well-known notion of Hausdorff measure of noncompactness in nonlocally convex linear spaces. The above notions of ctb set and of nonconvex total boundedness are especially useful working in the setting of nonlocally convex topological linear spaces (see, e.g., [6–8]).

Let (𝐸,‖⋅‖𝐸) be a normed space, Ξ© a nonempty set, and 𝒫(Ξ©) the power set of Ξ©. The space 𝐿0 is an 𝐹-normed linear space of 𝐸-valued functions defined on Ξ© which depends on an algebra π’œ in 𝒫(Ξ©) and a submeasure πœ‚βˆΆπ’«(Ξ©)β†’[0,+∞].

We observe that the space 𝐿0 defined above is a generalization of the space of measurable functions introduced in [9, Chapter III], in order to develop the integration theory with respect to finitely additive measures. Recall that given π‘€βŠ†πΏ0, the Hausdorff measure of noncompactness 𝛾(𝑀) of 𝑀 is defined by 𝛾(𝑀)∢=infπœ€>0∢thereexistfunctions𝑓1,…,π‘“π‘›βˆˆπΏ0suchthatπ‘€βŠ†π‘›ξšπ‘–=1𝑓𝑖+π΅πœ€ξ€·πΏ0ξƒ°,ξ€Έξ€Έ(1.1) where π΅πœ€(𝐿0)∢={π‘“βˆˆπΏ0βˆΆβ€–π‘“β€–0β‰€πœ€}. In [10, 11], to estimate 𝛾(𝑀) are used two quantitative characteristics πœ†(𝑀) and πœ”(𝑀) which measure, respectively, the degree of non equi-quasiboundedness and the degree of non equi-measurability of 𝑀.

The main purpose of this note is to estimate the measure of nonconvex total boundedness in 𝐿0 and to characterize the convexly totally bounded subsets of 𝐿0. At this end we introduce two quantitative characteristics πœ†π‘(𝑀) and πœ”π‘(𝑀) involving convex sets, which measure the degree of nonconvex equi-quasiboundedness and the degree of nonconvex equi-measurability of 𝑀, respectively. Then we establish some inequalities between 𝛾𝑐(𝑀), πœ†π‘(𝑀), πœ”π‘(𝑀), and πœ†(𝑀) that give, as a special case, a FrΓ©chet-Smulian type convex total boundedness criterion in the space 𝐿0. This generalizes previous results of Trombetta [12]. Finally, we point out that it is not so clear if the Schauder's problem has been solved in its generality. In particular, the proof given by Cauty in [13] contains some unsolved gaps (see [14, 15], Mathscinet review of [16], and Zentralblatt Math review of [17]). However, the results of this paper are meant to be independent from the Schauder's problem.

2. Definitions and Preliminaries

For the remainder of this section we present some definitions and known results which will be needed throughout this paper.

We use the convention infβˆ…βˆΆ=+∞. Moreover, for two sets 𝐴 and 𝐡, we denote by 𝐡𝐴 the set of all maps from 𝐴 to 𝐡. We recall the definition of the space 𝐿0 (see [11, 18]). Let (𝐸,‖⋅‖𝐸) be a normed space, Ξ© a nonempty set, π’œ an algebra in the power set β„™(Ξ©) of Ξ©, and πœ‚βˆΆβ„™(Ξ©)β†’[0,∞] a submeasure. Then‖𝑓‖0ξ€½β€–βˆΆ=infπ‘Ž>0βˆΆπœ‚ξ€·ξ€½π‘₯βˆˆΞ©βˆΆβ€–π‘“(π‘₯)𝐸β‰₯π‘Žξ€Ύξ€Έβ‰€π‘Ž(2.1) defines a group pseudonorm on 𝐸Ω, that is, β€–0β€–0=0, β€–βˆ’π‘“β€–0=‖𝑓‖0, ‖𝑓+𝑔‖0≀‖𝑓‖0+‖𝑔‖0, for all 𝑓,π‘”βˆˆπΈΞ©. Let 𝐿0∢=𝐿0(Ξ©,π’œ,𝐸,πœ‚) be the closure of the linear space π‘†βˆΆ=span{π‘¦πœ’π΄βˆΆπ‘¦βˆˆπΈandπ΄βˆˆπ’œ} of 𝐸-valued π’œ-simple functions in (𝐸Ω,β€–β‹…β€–0), where πœ’π΄ is the characteristics function of 𝐴. Identification of functions 𝑓,π‘”βˆˆπΈΞ© for which β€–π‘“βˆ’π‘”β€–0=0 turns (𝐿0,β€–β‹…β€–0) (the space of measurable functions) into an 𝐹-normed linear space in the sense of [19, page 38], that is, ‖𝑓+𝑔‖0≀‖𝑓‖0+‖𝑔‖0, limπ‘›β†’βˆžβ€–(1/𝑛)𝑓‖0=0, β€–πœ†π‘“β€–0≀‖𝑓‖0 for 𝑓,π‘”βˆˆπΏ0 and |πœ†|≀1.

Let π‘€βŠ†πΏ0. The measure of nonconvex total boundedness 𝛾𝑐(𝑀) of 𝑀 is defined by 𝛾𝑐(𝑀)∢=infπœ€>0∢thereexistfunctions𝑓1,…,π‘“π‘›βˆˆπΏ0𝐢andconvexsubsets1,…,𝐢𝑛ofπ΅πœ€ξ€·πΏ0ξ€Έsuchthatπ‘€βŠ†π‘›ξšπ‘–=1𝑓𝑖+𝐢𝑖.(2.2) Clearly 𝑀 is ctb if and only if 𝛾𝑐(𝑀)=0.

Let 𝐴1,…,π΄π‘šβˆˆπ’œ be a partition of Ξ©. We set 𝑆𝐴1,…,π΄π‘šξ€Έξƒ―βˆΆ=π‘ βˆˆπ‘†βˆΆπ‘ =π‘šξ“π‘–=1π‘¦π‘–πœ’π΄π‘–,where𝑦𝑖.∈𝐸for𝑖=1,…,π‘š(2.3) In [11] the following two quantitative characteristic πœ† and πœ” are used to estimate 𝛾 in 𝐿0: πœ†ξ€½ξ€·πΊ(𝑀)∢=infπœ€>0∢thereexistsafinitesubset𝐺of𝐸suchthatπ‘€βŠ†Ξ©ξ€Έβˆ©π‘†+π΅πœ€ξ€·πΏ0,ξ€½ξ€Έξ€Ύπœ”(𝑀)∢=infπœ€>0∢thereexistsapartition𝐴1,…,π΄π‘šξ€·π΄βˆˆπ’œofΞ©suchthatπ‘€βŠ†π‘†1,…,π΄π‘šξ€Έ+π΅πœ€ξ€·πΏ0.ξ€Έξ€Ύ(2.4)

The set 𝑀 is called equi-quasibounded if πœ†(𝑀)=0 and equi-measurable if πœ”(𝑀)=0.

Theorem 2.1 (see [11, Theorem 2.2.2]). Let π‘€βŠ†πΏ0. Then max{πœ†(𝑀),πœ”(𝑀)}≀𝛾(𝑀)β‰€πœ†(𝑀)+2πœ”(𝑀).(2.5) In particular, 𝑀 is totally bounded if and only if πœ†(𝑀)=πœ”(𝑀)=0.

Moreover, in [18], it is defined the following quantitative characteristic 𝜎(𝑀) which is useful for the calculation of πœ†(𝑀):𝜎(𝑀)∢=inf{πœ€>0∢thereexistsafinitesubset𝐺of𝐸suchthatforallπ‘“βˆˆπ‘€thereisπ·π‘“ξ€·π·βŠ†Ξ©withπœ‚π‘“ξ€Έξ€·β‰€πœ€andπ‘“Ξ©β§΅π·π‘“ξ€ΈβŠ†πΊ+π΅πœ€ξ€Ύ,(𝐸)(2.6) where π΅πœ€(𝐸)∢={π‘¦βˆˆπΈβˆΆβ€–π‘¦β€–πΈβ‰€πœ€}.

The following result was established in [18, Proposition 2.1].

Proposition 2.2. Let π‘€βŠ†πΏ0. Then πœ†(𝑀)=𝜎(𝑀).

We omit the proof of the following proposition which is similar to the proof of Proposition 2.6 of [12].

Proposition 2.3. Let π‘€βŠ†πΏ0. Then 𝛾𝑐(𝑀)=infπœ€>0∢thereexistfunctions𝑠1,…,π‘ π‘›πΆβˆˆπ‘†andconvexsubsets1,…,𝐢𝑛ofπ΅πœ€ξ€·πΏ0ξ€Έsuchthatπ‘€βŠ†π‘›ξšπ‘–=1𝑠𝑖+𝐢𝑖.(2.7)

3. Inequalities in the Space 𝐿0

In order to estimate the measure of nonconvex total boundedness in 𝐿0, we introduce the following two quantitative characteristics.

Definition 3.1. Let π‘€βŠ†πΏ0. We define the following: πœ†π‘ξƒ―πΆ(𝑀)∢=infπœ€>0∢thereexistafinitesubset𝐺of𝐸andconvexsubsets1,…,𝐢𝑛ofπ΅πœ€ξ€·πΏ0𝐺suchthatπ‘€βŠ†Ξ©ξ€Έ+βˆ©π‘†π‘›ξšπ‘–=1𝐢𝑖,πœ”π‘ξƒ―(𝑀)∢=infπœ€>0∢thereexistapartition𝐴1,…,π΄π‘šπΆβˆˆπ’œofΞ©andconvexsubsets1,…,𝐢𝑛ofπ΅πœ€ξ€·πΏ0𝐴suchthatπ‘€βŠ†π‘†1,…,π΄π‘šξ€Έ+π‘›ξšπ‘–=1𝐢𝑖.(3.1)

We call 𝑀 convexly equi-quasibounded if πœ†π‘(𝑀)=0 and convexly equi-measurable if πœ”π‘(𝑀)=0.

We observe that if 𝐸=ℝ, then the quantitative characteristics πœ†π‘ and πœ”π‘ coincide with those introduced in [12].

We point out that the request of convexity plays a crucial role in the definition of the parameters πœ†π‘ and πœ”π‘, whereas it was not involved in the definition of πœ† and πœ”. We illustrate this with the following example.

Example 3.2. Let 𝐿0∢=𝐿0([0,+∞[,π’œ,𝐸,πœ‚), where π’œ is the algebra of all Lebesgue-measurable subsets of the interval [0,+∞[ and πœ‚|π’œ the Lebesgue measure. Let 𝐼1∢=[0,1[, πΌπ‘›βˆ‘βˆΆ=[π‘›βˆ’1π‘˜=1βˆ‘(1/π‘˜),π‘›π‘˜=1(1/π‘˜)[ for 𝑛β‰₯2, and π‘€π‘›βˆΆ={π‘¦πœ’πΌπ‘›βˆΆπ‘¦βˆˆπΈ} for 𝑛β‰₯1. If β‹ƒπ‘€βˆΆ=βˆžπ‘›=1𝑀𝑛, then πœ†(𝑀)=1, πœ”(𝑀)=0, πœ†π‘(𝑀)=πœ”π‘(𝑀)=+∞.

Proof. It is easy to check that πœ†(𝑀)=1 and πœ”(𝑀)=0. We are going to prove that πœ†π‘(𝑀)=+∞. On the contrary, suppose that πœ†π‘(𝑀)<𝛼<+∞ then there exist a finite set 𝐺={𝑧1,…,𝑧𝑝}βŠ†πΈ and convex sets 𝐢1,…,πΆπ‘šβŠ†π΅π›Ό(𝐿0) such that ξ€·πΊπ‘€βŠ†Ξ©ξ€Έ+βˆ©π‘†π‘šξšπ‘—=1𝐢𝑗.(3.2) Set π‘βˆΆ=max{β€–π‘§π‘™β€–πΈβˆΆπ‘™=1,…,𝑝}. We have ‖𝑠‖0≀𝑐 for all π‘ βˆˆπΊΞ©βˆ©π‘†. Fix 𝛼>𝑐+𝛼, a natural number 𝑛 such that βˆ‘π‘›π‘›=1(1/𝑛)>π‘šπ›Ό, and π‘¦βˆˆπΈ with ‖𝑦‖𝐸>𝑛⋅𝛼.
Put π‘†π‘¦ξ€½βˆΆ=𝑓=π‘¦πœ’πΌπ‘›βˆΆπ‘›=1,2,…,𝑛,π‘†π‘—π‘¦ξ€½βˆΆ=π‘“βˆˆπ‘†π‘¦βˆΆthereisπ‘ π‘“βˆˆπΊΞ©βˆ©π‘†suchthatπ‘“βˆ’π‘ π‘“βˆˆπΆπ‘—ξ€Ύ(3.3) for 𝑗=1,…,π‘š.
Then it is easy to see that there exist π‘—βˆˆ{1,…,π‘š} and a subfamily {𝐼𝑛1,…,πΌπ‘›π‘˜} of {𝐼1,…,𝐼𝑛} such that π‘“π‘›π‘˜βˆˆπ‘†π‘—π‘¦ for π‘˜=1,…,π‘˜ and β‹ƒπœ‡(π‘˜π‘˜=1πΌπ‘›π‘˜)β‰₯𝛼. Moreover, a straightforward computation shows that β€–β€–β€–β€–π‘˜ξ“π‘˜=11π‘˜(π‘“π‘›π‘˜βˆ’π‘ π‘“π‘›π‘˜)β€–β€–β€–β€–0>𝛼,(3.4) which contradicts the convexity of the set 𝐢𝑗. Since πœ†π‘(𝑀)=+∞, the equality πœ”π‘(𝑀)=+∞ is a consequence of Theorem 3.4.

The following lemma is crucial in the proof of Theorem 3.4.

Lemma 3.3. Let 𝐴1,…,π΄π‘›βˆˆπ’œ be a partition of Ξ© and π»βŠ†π‘†(𝐴1,…,𝐴𝑛). Then πœ†(𝐻)=𝛾𝑐(𝐻).

Proof. Obviously, 𝛾(𝐻)≀𝛾𝑐(𝐻). Since πœ”(𝐻)=0, it follows from Theorem 2.1 and Proposition 2.2 that πœ†(𝐻)=𝛾(𝐻)=𝜎(𝐻). Then it is sufficient to prove the inequality 𝛾𝑐(𝐻)β‰€πœŽ(𝐻) which is trivial if 𝜎(𝐻)=πœ‚(Ξ©).
Assume that 𝜎(𝐻)<𝛼<πœ‚(Ξ©). By the definition of 𝜎 we can find a finite set πΊβŠ†πΈ, containing the origin 0∈𝐸 and sets 𝐷0∢=βˆ…, 𝐷1,…,π·π‘ŸβŠ†Ξ©, with πœ‚(𝐷𝑗)≀𝛼 for 𝑗=1,…,π‘Ÿ, such that(i)each 𝐷𝑗 for 𝑗=1,…,π‘Ÿ is the union of the members of a proper subfamily depending on 𝑗 of the partition {𝐴1,…,𝐴𝑛};(ii)for each π‘ βˆˆπ», there is π‘—βˆˆ{0,…,π‘Ÿ} such that 𝑠(Ω⧡𝐷𝑗)βŠ†πΊ+𝐡𝛼(𝐸).
For 𝑗=0,…,π‘Ÿ we consider the following convex subsets of 𝐡𝛼(𝐿0): πΆπ‘—π›Όξ€½ξ€·π΄βˆΆ=π‘ βˆˆπ‘†1,…,π΄π‘›ξ€Έξ€·βˆΆπ‘ Ξ©β§΅π·π‘—ξ€ΈβŠ†π΅π›Όξ€Ύ,(𝐸)(3.5) and we set π»π‘—ξ€½ξ€·βˆΆ=π‘ βˆˆπ»βˆΆπ‘ Ξ©β§΅π·π‘—ξ€ΈβŠ†πΊ+𝐡𝛼.(𝐸)(3.6) We will prove that 𝐻=π‘Ÿξšπ‘—=0π»π‘—βŠ†ξ€ΊπΊΞ©ξ€·π΄βˆ©π‘†1,…,𝐴𝑛+ξ€Έξ€»π‘Ÿξšπ‘—=0𝐢𝑗𝛼.(3.7)
It follows that 𝛾𝑐(𝐻)≀𝛼, and therefore 𝛾𝑐(𝐻)β‰€πœŽ(𝐻).
Let βˆ‘π‘ =𝑛𝑖=1π‘¦π‘–πœ’π΄π‘–βˆˆπ». Suppose π‘ βˆˆπ»π‘—, 𝑗β‰₯1 and 𝐷𝑗=β‹ƒπ‘˜π‘™=1𝐴𝑖𝑙, where {𝐴𝑖1,…,π΄π‘–π‘˜} is a proper subfamily of the partition {𝐴1,…,𝐴𝑛}.
Put {π΄π‘–π‘˜+1,…,𝐴𝑖𝑛}∢={𝐴1,…,𝐴𝑛}⧡{𝐴𝑖1,…,π΄π‘–π‘˜}.
We have 𝑠Ω⧡𝐷𝑗=ξ‚†π‘¦π‘–π‘˜+1,…,π‘¦π‘–π‘›ξ‚‡βŠ†πΊ+𝐡𝛼(𝐸).(3.8) Hence, for all π‘™βˆˆ{π‘˜+1,…,𝑛}, there is π‘§π‘–π‘™βˆˆπΊ such that π‘¦π‘–π‘™βˆ’π‘§π‘–π‘™βˆˆπ΅π›Ό(𝐸). Then 𝑠=πœ‘+β„Ž, where πœ‘βˆΆ=𝑛𝑙=π‘˜+1π‘§π‘–π‘™πœ’π΄π‘–π‘™βˆˆπΊΞ©ξ€·π΄βˆ©π‘†1,…,𝐴𝑛,β„ŽβˆΆ=π‘˜ξ“π‘™=1π‘¦π‘–π‘™πœ’π΄π‘–π‘™+𝑛𝑙=π‘˜+1𝑦𝑖lβˆ’π‘§π‘–π‘™ξ€Έπœ’π΄π‘–π‘™βˆˆπΆπ‘—π›Ό.(3.9) Therefore, ξ€ΊπΊπ‘ βˆˆΞ©ξ€·π΄βˆ©π‘†1,…,𝐴𝑛+𝐢𝑗𝛼.(3.10) Similarly, if π‘ βˆˆπ»0, we can prove that ξ€ΊπΊπ‘ βˆˆΞ©ξ€·π΄βˆ©π‘†1,…,𝐴𝑛+𝐢0𝛼.(3.11) Thus, (3.7) immediately follows from (3.10) and (3.11).

We are now in a position to prove the main result of this note.

Theorem 3.4. Let π‘€βŠ†πΏ0. Then, ξ€½πœ†max𝑐(𝑀),πœ”π‘ξ€Ύ(𝑀)≀𝛾𝑐(𝑀)β‰€πœ†(𝑀)+2πœ”π‘(𝑀).(3.12)

Proof. We first prove the left inequality which is trivial if 𝛾𝑐(𝑀)=+∞. Assume that 𝛾𝑐(𝑀)<𝛼<+∞. By Proposition 2.3, there are functions 𝑠1,…,π‘ π‘›βˆˆπ‘† and convex sets 𝐢1,…,𝐢𝑛 in 𝐡𝛼(𝐿0) such that π‘€βŠ†π‘›ξšπ‘–=1𝑠𝑖+𝐢𝑖.(3.13)
Put β‹ƒπΉβˆΆ=𝑛𝑖=1𝑠𝑖(Ξ©) and let 𝐴1,…,π΄π‘šβˆˆπ’œ be a partition of Ξ© such that 𝑠𝑖|𝐴𝑗 is constant for 𝑖=1,…,𝑛 and 𝑗=𝑖,…,π‘š. Then, ξ€·πΉπ‘€βŠ†Ξ©ξ€·π΄βˆ©π‘†1,…,π΄π‘š+ξ€Έξ€Έπ‘›ξšπ‘–=1𝐢𝑖,(3.14) hence πœ†π‘(𝑀)<𝛼, and πœ”π‘(𝑀)<𝛼.
Therefore, ξ€½πœ†max𝑐(𝑀),πœ”π‘ξ€Ύ(𝑀)≀𝛾𝑐(𝑀).(βˆ—) We now prove the right inequality. Clearly, it is true if πœ†(𝑀)=+∞ or πœ”π‘(𝑀)=+∞. Assume that πœ”π‘(𝑀)<𝛽<+∞. By the definition of πœ”π‘, we can find a partition 𝐴1,…,π΄π‘šβˆˆπ’œ and convex sets 𝐾1,…,πΎπ‘š of 𝐡𝛽(𝐿0) such that ξ€·π΄π‘€βŠ†π‘†1,…,π΄π‘šξ€Έ+π‘šξšπ‘—=1𝐾𝑗.(3.15) Set ξƒ©π»βˆΆ=π‘€βˆ’π‘šξšπ‘—=1𝐾𝑗ξƒͺξ€·π΄βˆ©π‘†1,…,π΄π‘šξ€Έ,(3.16) then we have πœ†(𝐻)β‰€πœ†(𝑀)+𝛽. It easy to see that π‘€βŠ†π»+π‘šξšπ‘—=1𝐾𝑗.(3.17)
Therefore, by Lemma 3.3, we have that 𝛾𝑐(𝑀)≀𝛾𝑐(𝐻)+𝛽=πœ†(𝐻)+π›½β‰€πœ†(𝑀)+𝛽+𝛽,(3.18) and so 𝛾𝑐(𝑀)β‰€πœ†(𝑀)+2πœ”π‘(𝑀).(3.19) The proof is complete.

As a corollary of Theorem 3.4, we obtain the following FrΓ©chet-Smulian type convex total boundedness criterion.

Corollary 3.5. A subset 𝑀 of 𝐿0 is ctb if and only if πœ†(𝑀)=πœ”π‘(𝑀)=0.

Remark 3.6. In [12], Trombetta proved that ξ€½πœ†max𝑐(𝑀),πœ”π‘ξ€Ύ(𝑀)≀𝛾𝑐(𝑀)β‰€πœ†π‘(𝑀)+2πœ”π‘(𝑀)(3.20) for a subset π‘€βŠ†πΏ0(Ξ©,π’œ,ℝ,πœ‚). Since πœ†(𝑀)β‰€πœ†π‘(𝑀), Theorem 3.4 improves and generalizes to 𝐸-valued case the above inequalities.

We point out that the approach used in the scalar case [12] in order to prove Theorem 3.7 cannot be used in our framework. The crucial difference is in the proof of Lemma 3.3. In fact, if dim(𝐸)=+∞, it might exist some π‘–βˆˆ{1,…,𝑛} such that the set 𝐻(𝐴𝑖)∢={𝑠(𝐴𝑖)βˆΆπ‘ βˆˆπ»} is bounded but not necessarily totally bounded.

The following example shows how the value of the parameters πœ† and πœ†π‘ changes when passing from the scalar case to the 𝐸-valued case.

Example 3.7. Let π‘€βˆΆ={π‘¦πœ’Ξ©βˆΆπ‘¦βˆˆπ΅(𝐸)}, where 𝐡(𝐸)={π‘¦βˆˆπΈβˆΆβ€–π‘¦β€–πΈβ‰€1}. Then πœ†(𝑀)=πœ†π‘(𝑀)=0 if 𝐸 is finite dimensional, πœ†(𝑀)=πœ†π‘(𝑀)=1, otherwise. Moreover, since πœ”π‘(𝑀)=0, we have πœ†(𝑀)=πœ†π‘(𝑀)=𝛾𝑐(𝑀).

Corollary 3.8. Let π‘€βŠ†πΏ0. Then, ξ€½maxπœ†(𝑀),πœ”π‘ξ€Ύξ‚†πœ†ξ‚€(𝑀)≀max𝑀,πœ”π‘ξ‚€π‘€ξ‚†πœ†ξ‚ξ‚‡β‰€max𝑐𝑀,πœ”π‘ξ‚€π‘€ξ‚ξ‚‡β‰€πœ†(𝑀)+2πœ”π‘(𝑀).(3.21)

Proof. It is sufficient to observe that 𝛾𝑐(𝑀)=𝛾𝑐(𝑀).
In particular, 𝑀 ctb implies πœ†(𝑀)=πœ†(𝑀)=0, πœ†π‘(𝑀)=πœ†π‘(𝑀)=0, and πœ”π‘(𝑀)=πœ”π‘(𝑀)=0.

The next two corollaries of Theorem 3.4 are useful in order to compute or to estimate 𝛾𝑐 in particular classes of subsets of 𝐿0. Moreover, the second one generalizes [12, Proposition 3.10].

Corollary 3.9. Let 𝑀 be a convexly equi-measurable subset of 𝐿0. Then, πœ†(𝑀)=𝛾𝑐(𝑀).

Corollary 3.10. Let 𝑀 be an equi-quasibounded subset of 𝐿0. Then, ξ€½πœ†max𝑐(𝑀),πœ”π‘ξ€Ύ(𝑀)≀𝛾𝑐(𝑀)≀2πœ”π‘(𝑀).(βˆ—βˆ—)

We observe that if 𝐾 is a totally bounded subset of 𝐸 and π‘€βˆΆ={π‘“βˆˆπΏ0βˆΆπ‘“(Ξ©)βŠ†πΎ}, then, since πœ†(𝑀)=0, the inequalities (3.21) are true for 𝑀.

Example 3.11. Let 𝐿0 be the space of Example 3.2 and assume that 𝐸 is the Banach space π‘™βˆž of all sequences 𝑦=(πœ‰1,πœ‰2,…) with finite norm β€–π‘¦β€–βˆžβˆΆ=sup{|πœ‰π‘›|βˆΆπ‘›=1,2,…}. If 𝐾∢={π‘¦βˆˆπ‘™βˆžβˆΆ|πœ‰π‘›|≀1/𝑛for𝑛=1,2,…} and π‘€βˆΆ={π‘“βˆˆπΏ0βˆΆπ‘“(Ξ©)βŠ†πΎ}, it is easy to prove that πœ†π‘(𝑀)=0 and πœ”π‘(𝑀)=𝛾𝑐(𝑀)=1. If 𝐡(π‘™βˆž) is the closed unit ball of π‘™βˆž and π‘€βˆΆ={π‘“βˆˆπΏ0βˆΆπ‘“(Ξ©)βŠ†π΅(π‘™βˆž)}, the set 𝑀 satisfies πœ†(𝑀)=πœ†π‘(𝑀)=𝛾𝑐(𝑀)=πœ”π‘(𝑀)=1.