Table of Contents Author Guidelines Submit a Manuscript
Journal of Function Spaces and Applications
Volume 2012, Article ID 293613, 10 pages
http://dx.doi.org/10.1155/2012/293613
Research Article

A Note on Multiplication and Composition Operators in Lorentz Spaces

1Trinity University, One Trinity Place, San Antonio, TX 78212, USA
2US Air Force Academy, Colorado Springs, CO 80840, USA
3Department of Mathematics and Statistics, Auburn University, 221 Parker Hall, Auburn, AL 36849, USA

Received 6 February 2012; Accepted 21 June 2012

Academic Editor: Gestur Ólafsson

Copyright © 2012 Eddy Kwessi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. G. Lorentz, โ€œSome new functional spaces,โ€ Annals of Mathematics, vol. 51, pp. 37โ€“55, 1950. View at Publisher ยท View at Google Scholar ยท View at Zentralblatt MATH
  2. G. G. Lorentz, โ€œOn the theory of spaces,โ€ Pacific Journal of Mathematics, vol. 1, pp. 411โ€“429, 1951. View at Google Scholar ยท View at Zentralblatt MATH
  3. S. C. Arora, G. Datt, and S. Verma, โ€œComposition operators on Lorentz spaces,โ€ Bulletin of the Australian Mathematical Society, vol. 76, no. 2, pp. 205โ€“214, 2007. View at Publisher ยท View at Google Scholar ยท View at Zentralblatt MATH
  4. S. C. Arora, G. Datt, and S. Verma, โ€œMultiplication and composition operators on Orlicz-Lorentz spaces,โ€ International Journal of Mathematical Analysis, vol. 1, no. 25–28, pp. 1227โ€“1234, 2007. View at Google Scholar ยท View at Zentralblatt MATH
  5. S. C. Arora, G. Datt, and S. Verma, โ€œComposition operators on Lorentz spaces,โ€ Bulletin of the Australian Mathematical Society, vol. 76, no. 2, pp. 205โ€“214, 2007. View at Publisher ยท View at Google Scholar ยท View at Zentralblatt MATH
  6. S. C. Arora, G. Datt, and S. Verma, โ€œMultiplication and composition operators on Lorentz-Bochner spaces,โ€ Osaka Journal of Mathematics, vol. 45, no. 3, pp. 629โ€“641, 2008. View at Google Scholar ยท View at Zentralblatt MATH
  7. G. De Souza, โ€œA new characterization of the Lorentz spaces L(p,1) for p>1 and applications,โ€ in Proceedings of the Real Analysis Exchange, pp. 55โ€“58, 2010.
  8. L. Grafakos, Classical Fourier analysis, vol. 249 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 2nd edition, 2008.
  9. E. M. Stein and G. Weiss, โ€œAn extension of a theorem of Marcinkiewicz and some of its applications,โ€ vol. 8, pp. 263โ€“284, 1959. View at Google Scholar ยท View at Zentralblatt MATH
  10. J. Yong, P. Lihua, and L. Peide, โ€œAtomic decompositions of Lorentz martingale spaces and applications,โ€ Journal of Function Spaces and Applications, vol. 7, no. 2, pp. 153โ€“166, 2009. View at Publisher ยท View at Google Scholar ยท View at Zentralblatt MATH
  11. S. Bennett and R. Sharpley, Interpolation of Operators, vol. 129 of Pure and Applied Mathematics, Academic Press, Boston, Mass, USA, 1988. View at Zentralblatt MATH
  12. H. G. Feichtinger and G. Zimmermann, โ€œAn exotic minimal Banach space of functions,โ€ Mathematische Nachrichten, vol. 239/240, pp. 42โ€“61, 2002. View at Publisher ยท View at Google Scholar ยท View at Zentralblatt MATH