Abstract

The existence and multiplicity of positive solutions are established for second-order periodic boundary value problem. Our results are based on the theory of a fixed point index for A-proper semilinear operators defined on cones due to Cremins. Our approach is different in essence from other papers and the main results of this paper are also new.

1. Introduction

In the present paper, we discuss the existence of positive solutions of the periodic boundary value problem (PBVP) for second-order differential equationπ‘₯ξ…žξ…ž(𝑑)=𝑓(𝑑,π‘₯),0<𝑑<1,π‘₯(0)=π‘₯(1),π‘₯ξ…ž(0)=π‘₯ξ…ž(1),(1.1) where π‘“βˆΆ[0,1]×ℝ→ℝ is a continuous function. Our purpose here is to provide sufficient conditions for the existence of multiple positive solutions to the periodic boundary value problem (1.1). This will be done by applying the theory of a fixed point index for A-proper semilinear operators defined on cones obtained by Cremins [1].

We are interested in positive solutions of (1.1), because we have been motivated by a problem from the Theory of Nonlinear Elasticity modelling radial oscillations of an elastic spherical membrane made up of a neo-Hookean material and subjected to an internal pressure. Because of wide interests in physics and engineering, second-order periodic boundary value problems have been studied widely in the literature; we refer the reader to [2–30] and references therein. In [6, 7], by using Krasnoselskii’s fixed point theorem, the existence and multiplicity of positive solutions are established to the periodic boundary value problem onβˆ’π‘₯ξ…žξ…ž+𝜌2π‘₯π‘₯=𝑓(𝑑,π‘₯),0<𝑑<2πœ‹,𝜌>0,π‘₯(0)=π‘₯(2πœ‹),π‘₯β€²(0)=π‘₯β€²(2πœ‹),ξ…žξ…ž+𝜌21π‘₯=𝑓(𝑑,π‘₯),0<𝑑<2πœ‹,0<𝜌<2,π‘₯(0)=π‘₯(2πœ‹),π‘₯ξ…ž(0)=π‘₯ξ…ž(2πœ‹).(1.2)

Agarwal et al. [8] discussed the existence of positive solutions for the second-order differential equationβˆ’π‘₯ξ…žξ…ž(𝑑)+𝑏(𝑑)π‘₯(𝑑)=𝑔(𝑑)𝑓(𝑑,π‘₯(𝑑)),0<𝑑<πœ”,π‘₯(0)=π‘₯(πœ”),π‘₯ξ…ž(0)=π‘₯ξ…ž(πœ”),(1.3) where 𝑏(𝑑) and 𝑔(𝑑) are continuous πœ”-periodic positive functions and π‘“βˆˆπΆ(ℝ×[0,∞),[0,∞)). By employing fixed point index theory in cones, they found sufficient conditions for the existence of at least one positive solution. Recently, Torres [9] and Yao [10] obtained some results on the existence of positive solutions of a general periodic boundary value problemπ‘₯ξ…žξ…ž(𝑑)=𝑓(𝑑,π‘₯(𝑑)),0<𝑑<2πœ‹,π‘₯(0)=π‘₯(2πœ‹),π‘₯ξ…ž(0)=π‘₯ξ…ž(2πœ‹).(1.4) In this case, the problem (1.4) has no Green function. In order to overcome this difficulty, their main technique is to rewrite the original PBVP (1.4) as an equivalent one, so that the Krasnoselskii fixed point theorem on compression and expansion of cones can be applied. Inspired by the above work, the aim of this paper is to consider the existence and multiplicity of positive solutions for the periodic boundary value problem (1.1). The method we used here is different in essence from other papers and the main results of this paper are also new.

This paper is organized as follows. In Section 2, we give some preliminaries and establish several lemmas, and the main theorems are formulated and proved in Section 3. Finally, in Section 4, we give two examples to illustrate our results.

2. Notation and Preliminaries

We start by introducing some basic notation relative to theory of the fixed point index for A-proper semilinear operators defined on cones established by Cremins (see [1]).

Let 𝑋 and π‘Œ be Banach spaces, 𝐷 a linear subspace of 𝑋, {𝑋𝑛}βŠ‚π·, and {π‘Œπ‘›}βŠ‚π‘Œ sequences of oriented finite-dimensional subspaces such that 𝑄𝑛𝑦→𝑦 in π‘Œ for every 𝑦 and dist(π‘₯,𝑋𝑛)β†’0 for every π‘₯∈𝐷, where π‘„π‘›βˆΆπ‘Œβ†’π‘Œπ‘› and π‘ƒπ‘›βˆΆπ‘‹β†’π‘‹π‘› are sequences of continuous linear projections. The projection scheme Ξ“={𝑋𝑛,π‘Œπ‘›,𝑃𝑛,𝑄𝑛} is then said to be admissible for maps from π·βŠ‚π‘‹ to π‘Œ.

Definition 2.1 (see [1]). A map π‘‡βˆΆπ·βŠ‚π‘‹β†’π‘Œ is called approximation-proper (A-proper) at a point π‘¦βˆˆπ‘Œ with respect to Ξ“ if 𝑇𝑛≑𝑃𝑛𝑇|π·βˆ©π‘‹π‘› is continuous for each π‘›βˆˆβ„• and whenever {π‘₯π‘›π‘—βˆΆπ‘₯π‘›π‘—βˆˆπ·βˆ©π‘‹π‘›π‘—} is bounded with 𝑇𝑛𝑗π‘₯𝑛𝑗→𝑦, then there exists a subsequence {π‘₯π‘›π‘—π‘˜} such that π‘₯π‘›π‘—π‘˜β†’π‘₯∈𝐷, and 𝑇π‘₯=𝑦. 𝑇 is said to be A-proper on a set Ξ© if it is A-proper at all points of Ξ©.
Let 𝐾 be a cone in a finite-dimensional Banach space 𝑋, and let Ξ©βŠ‚π‘‹ be open and bounded with Ω∩𝐾=Ξ©πΎβ‰ βˆ…. Let π‘‡βˆΆΞ©πΎβ†’πΎ be continuous such that 𝑇π‘₯β‰ π‘₯ on πœ•Ξ©πΎ=πœ•Ξ©βˆ©πΎ, where Ω𝐾 and πœ•Ξ©πΎ denote the closure and boundary, respectively, of Ω𝐾 relative 𝐾. Let πœŒβˆΆπ‘‹β†’πΎ be an arbitrary retraction.
The following definition of finite-dimensional index forms the basis of generalized index for A-proper maps πΌβˆ’π‘‡.

Definition 2.2 (see [1]). One defines 𝑖𝐾(𝑇,Ξ©)=degπ΅ξ€·πΌβˆ’π‘‡πœŒ,πœŒβˆ’1(Ξ©)βˆ©π΅π‘…ξ€Έ,,0(2.1) where the degree is the Brouwer degree and 𝐡𝑅 is a ball containing Ω𝐾.
Now let 𝐾 be a cone in an infinite-dimensional Banach space 𝑋 with projection scheme Ξ“ such that 𝑄𝑛(𝐾)βŠ†πΎ for every π‘›βˆˆβ„•. Let πœŒβˆΆπ‘‹β†’πΎ be an arbitrary retraction and Ξ©βŠ‚π‘‹ an open bounded set such that Ω𝐾=Ξ©βˆ©πΎβ‰ βˆ…. Let π‘‡βˆΆΞ©πΎβ†’πΎ be such that πΌβˆ’π‘‡ is A-proper at 0. Write 𝐾𝑛=πΎβˆ©π‘‹π‘›=𝑄𝑛𝐾 and Ω𝑛=Ξ©πΎβˆ©π‘‹π‘›. Then π‘„π‘›πœŒβˆΆπ‘‹π‘›β†’πΎπ‘› is a finite dimensional retraction.

Definition 2.3 (see [1]). If 𝑇π‘₯β‰ π‘₯ on πœ•Ξ©πΎ, then one defines ind𝐾(𝑇,Ξ©)=π‘˜βˆˆβ„€βˆͺ{±∞}βˆΆπ‘–πΎπ‘›π‘—ξ‚€π‘„π‘›π‘—π‘‡,Ξ©π‘›π‘—ξ‚βŸΆπ‘˜forsomeπ‘›π‘—ξ‚‡βŸΆβˆž,(2.2) that is, the index is the set of limit points of 𝑖𝐾𝑛𝑗(𝑄𝑛𝑗𝑇,Ω𝑛𝑗), where the finite dimensional index is that defined above.
Let 𝐿∢domπΏβŠ‚π‘‹β†’π‘Œ be a Fredholm map of index zero, and let π‘ƒβˆΆπ‘‹β†’π‘‹,π‘„βˆΆπ‘Œβ†’π‘Œ be continuous projectors such that Im𝑃=Ker𝐿, Ker𝑄=Im𝐿 and 𝑋=KerπΏβŠ• Ker𝑃, π‘Œ=ImπΏβŠ•Im𝑄. The restriction of 𝐿 to dom𝐿∩Ker𝑃, denoted 𝐿1, is a bijection onto Im𝐿 with continuous inverse 𝐿1βˆ’1∢ Im𝐿→dom𝐿∩Ker𝑃. Since dim Im𝑄=dim Ker𝐿, there exists a continuous bijection 𝐽∢ Im𝑄→ Ker𝐿. Let 𝐾 be a cone in an infinite-dimensional Banach space 𝑋 with projection scheme Ξ“. If we let 𝐻=𝐿+π½βˆ’1𝑃, then 𝐻∢ domπΏβŠ‚π‘‹β†’π‘Œ is a linear bijection with bounded inverse. Thus 𝐾1=𝐻(𝐾∩dom𝐿) is a cone in the Banach space π‘Œ.
Let Ξ©βŠ‚π‘‹ be open and bounded with Ω𝐾∩domπΏβ‰ βˆ…,𝐿∢domπΏβŠ‚π‘‹β†’π‘Œ a bounded Fredholm operator of index zero, and π‘βˆΆΞ©πΎβˆ© domπΏβ†’π‘Œ a bounded continuous nonlinear operator such that πΏβˆ’π‘ is A-proper at 0.
We can now extend the definition of the index to A-proper maps of the form πΏβˆ’π‘ acting on cones.

Definition 2.4 (see [1]). Let 𝜌1 be a retraction from π‘Œ to 𝐾1, and assume 𝑄𝑛𝐾1βŠ‚πΎ1,𝑃+𝐽𝑄𝑁+𝐿1βˆ’1(πΌβˆ’π‘„)𝑁 maps 𝐾∩dom𝐿 to 𝐾∩dom𝐿 and 𝐿π‘₯≠𝑁π‘₯ on πœ•Ξ©πΎ. One defines the fixed point index of πΏβˆ’π‘ over Ω𝐾 as ind𝐾([]𝐿,𝑁,Ξ©)=ind𝐾1(𝑇,π‘ˆ),(2.3) where π‘ˆ=𝐻(Ω𝐾),π‘‡βˆΆπ‘Œβ†’π‘Œ is defined as 𝑇𝑦=(𝑁+π½βˆ’1𝑃)π»βˆ’1𝑦 for each π‘¦βˆˆπ‘Œ, and the index on the right is that of Definition 2.3.
For convenience, we recall some properties of ind𝐾.

Proposition 2.5 (see [1]). Let 𝐿∢domπΏβ†’π‘Œ be Fredholm of index zero, and let Ξ©βŠ‚π‘‹ be open and bounded. Assume that 𝑃+𝐽𝑄𝑁+𝐿1βˆ’1(πΌβˆ’π‘„)𝑁 maps 𝐾 to 𝐾, and 𝐿π‘₯≠𝑁π‘₯ on πœ•Ξ©πΎ. Then one has
(𝑃1)(existence property) if ind𝐾([𝐿,𝑁],Ξ©)β‰ {0}, then there exists π‘₯∈Ω𝐾 such that 𝐿π‘₯=𝑁π‘₯;(𝑃2)(normality property) if π‘₯0∈Ω𝐾, then ind𝐾([𝐿,βˆ’π½βˆ’1𝑃+̂𝑦0],Ξ©)={1}, where ̂𝑦0=𝐻π‘₯0 and ̂𝑦0(𝑦)=𝑦0 for every π‘¦βˆˆπ»(Ω𝐾);(𝑃3)(additivity property) if 𝐿π‘₯≠𝑁π‘₯ for π‘₯∈Ω𝐾⧡(Ξ©1βˆͺΞ©2), where Ξ©1 and Ξ©2 are disjoint relatively open subsets of Ω𝐾, thenind𝐾([]𝐿,𝑁,Ξ©)βŠ†ind𝐾[]𝐿,𝑁,Ξ©1ξ€Έ+ind𝐾[]𝐿,𝑁,Ξ©2ξ€Έ(2.4) with equality if either of indices on the right is a singleton;(𝑃4)(homotopy invariance property) if πΏβˆ’π‘(πœ†,π‘₯) is an A-proper homotopy on Ω𝐾 for πœ†βˆˆ[0,1] and (𝑁(πœ†,π‘₯)+π½βˆ’1𝑃)π»βˆ’1∢𝐾1→𝐾1 and πœƒβˆ‰(πΏβˆ’π‘(πœ†,π‘₯))(πœ•Ξ©πΎ) for πœ†βˆˆ[0,1], then ind𝐾([𝐿,𝑁(πœ†,π‘₯)],Ξ©)=ind𝐾1(π‘‡πœ†,π‘ˆ) is independent of πœ†βˆˆ[0,1], where π‘‡πœ†=(𝑁(πœ†,π‘₯)+π½βˆ’1𝑃)π»βˆ’1.

The following two lemmas will be used in this paper.

Lemma 2.6. If 𝐿∢domπΏβ†’π‘Œ is Fredholm of index zero, Ξ© is an open bounded set, and Ω𝐾∩domπΏβ‰ βˆ…, and let πΏβˆ’πœ†π‘ be A-proper for πœ†βˆˆ[0,1]. Assume that 𝑁 is bounded and 𝑃+𝐽𝑄𝑁+𝐿1βˆ’1(πΌβˆ’π‘„)𝑁 maps 𝐾 to 𝐾. If there exists π‘’βˆˆπΎ1⧡{πœƒ}, such that 𝐿π‘₯βˆ’π‘π‘₯β‰ πœ‡π‘’,(2.5) for every π‘₯βˆˆπœ•Ξ©πΎ and all πœ‡β‰₯0, then ind𝐾([𝐿,𝑁],Ξ©)={0}.

Proof. Choose a real number 𝑙 such that 𝑙>supπ‘₯βˆˆΞ©β€–πΏπ‘₯βˆ’π‘π‘₯β€–,‖𝑒‖(2.6) and define 𝑁(πœ‡,π‘₯)∢[0,1]Γ—Ξ©πΎβ†’π‘Œ by 𝑁(πœ‡,π‘₯)=𝑁π‘₯+π‘™πœ‡π‘’.(2.7) Trivially, (𝑁(πœ‡,π‘₯)+π½βˆ’1𝑃)π»βˆ’1∢𝐾1→𝐾1 and from (2.5) we obtain []𝑁π‘₯+π‘™πœ‡π‘’β‰ πΏπ‘₯,forany(πœ‡,π‘₯)∈0,1Γ—πœ•Ξ©πΎ.(2.8) Again, by homotopy invariance property in Proposition 2.5, we have ind𝐾([]𝐿,𝑁(0,π‘₯),Ξ©)=ind𝐾([]𝐿,𝑁,Ξ©)=ind𝐾([]𝐿,𝑁(1,π‘₯),Ξ©).(2.9) However, ind𝐾([]𝐿,𝑁(1,π‘₯),Ξ©)={0}.(2.10) In fact, if ind𝐾([𝐿,𝑁(1,π‘₯)],Ξ©)β‰ {0}, the existence property in Proposition 2.5 implies that there exists π‘₯0∈Ω𝐾 such that 𝐿π‘₯0=𝑁π‘₯0+𝑙𝑒.(2.11) Then ‖‖𝑙=𝐿π‘₯0βˆ’π‘π‘₯0β€–β€–β€–,𝑒‖(2.12) which contradicts (2.6). So ind𝐾([]𝐿,𝑁,Ξ©)={0}.(2.13)

Remark 2.7. The original condition of [1, Theorem  5] was given with πœƒβ‰ π‘’βˆˆπΏ(𝐾∩dom𝐿) instead of π‘’βˆˆπΎ1⧡{πœƒ}. The modification is necessary since otherwise it cannot guarantee that (𝑁+πœ‡π‘’+π½βˆ’1𝑃)π»βˆ’1∢𝐾1→𝐾1.
We assume that there is a continuous bilinear form [𝑦,π‘₯] on π‘ŒΓ—π‘‹ such that π‘¦βˆˆIm𝐿 if and only if [𝑦,π‘₯]=0 for each π‘₯∈Ker𝐿. This condition implies that if {π‘₯1,π‘₯2,…,π‘₯𝑛} is a basis in Ker𝐿, then the linear map 𝐽∢Im𝑄→Ker𝐿 defined by βˆ‘π½π‘¦=𝛽𝑛𝑖=1[𝑦,π‘₯𝑖]π‘₯𝑖, π›½βˆˆβ„+ is an isomorphism and that if βˆ‘π‘¦=𝑛𝑖=1𝑦𝑖π‘₯𝑖, then [π½βˆ’1𝑦,π‘₯𝑖]=𝑦𝑖/𝛽 for 1≀𝑖≀𝑛 and [π½βˆ’1π‘₯0,π‘₯0]>0 for π‘₯0∈Ker𝐿.
In [1], Cremins extended a continuation theorem related to that of Mawhin [31] and Petryshyn [32] for semilinear equations to cones; refer to [1, Corollary  1] for the details. By Lemma 2.6 and [1, Corollary  1], we obtain the following existence theorem of positive solutions to a semilinear equation in cones. It is worth mentioning that the positive or nonnegative solutions of an operator equation 𝐿π‘₯=𝑁π‘₯ were also discussed by a recent paper of O’Regan and Zima [33] and the earlier papers [34–38].

Lemma 2.8. If 𝐿∢domπΏβ†’π‘Œ is Fredholm of index zero, πΎβŠ‚π‘‹ is a cone, Ξ©1 and Ξ©2 are open bounded sets such that πœƒβˆˆΞ©1βŠ‚Ξ©1βŠ‚Ξ©2 and Ξ©2∩𝐾∩domπΏβ‰ βˆ…. Suppose that πΏβˆ’πœ†π‘ is A-proper for πœ†βˆˆ[0,1] with π‘βˆΆΞ©2βˆ©πΎβ†’π‘Œ bounded. Assume that
(𝐢1)(𝑃+𝐽𝑄𝑁)(𝐾)βŠ‚πΎ and (𝑃+𝐽𝑄𝑁+𝐿1βˆ’1(πΌβˆ’π‘„)𝑁)(𝐾)βŠ‚πΎ,
(𝐢2)𝐿π‘₯β‰ πœ†π‘π‘₯ for π‘₯βˆˆπœ•Ξ©2∩𝐾,πœ†βˆˆ(0,1],
(𝐢3)𝑄𝑁π‘₯β‰ 0 for π‘₯βˆˆπœ•Ξ©2∩𝐾∩Ker𝐿,
(𝐢4)[𝑄𝑁π‘₯,π‘₯]≀0,π‘“π‘œπ‘Ÿπ‘Žπ‘™π‘™π‘₯βˆˆπœ•Ξ©2∩𝐾∩Ker𝐿,
(𝐢5) there exists π‘’βˆˆπΎ1⧡{πœƒ}, such that 𝐿π‘₯βˆ’π‘π‘₯β‰ πœ‡π‘’,π‘“π‘œπ‘Ÿπ‘’π‘£π‘’π‘Ÿπ‘¦πœ‡β‰₯0,π‘₯βˆˆπœ•Ξ©1∩𝐾.(2.14) Then there exists π‘₯∈dom𝐿∩𝐾∩(Ξ©2⧡Ω1) such that 𝐿π‘₯=𝑁π‘₯.

Corollary 2.9. Assume all conditions of Lemma 2.8 hold except (𝐢2) and assume (𝐢2)′‖𝐿π‘₯βˆ’π‘π‘₯β€–2β‰₯‖𝑁π‘₯β€–2βˆ’β€–πΏπ‘₯β€–2 for each π‘₯βˆˆπœ•Ξ©2∩𝐾. Then the same conclusion holds.

Proof. We show that (𝐢2)ξ…ž implies (𝐢2), that is, 𝐿π‘₯β‰ πœ†π‘π‘₯, for each π‘₯βˆˆπœ•Ξ©2∩𝐾,πœ†βˆˆ(0,1]. Here πœ†βˆˆ[0,1). Otherwise, the proof is finished. If π‘₯∈KerπΏβˆ©πœ•Ξ©2∩𝐾, then it follows from 𝐿π‘₯=πœ†π‘π‘₯=πœƒ that 𝐿π‘₯=𝑁π‘₯ has a solution in dom𝐿∩𝐾∩(Ξ©2⧡Ω1), and Corollary 2.9 is proved. If π‘₯∈dom𝐿⧡KerπΏβˆ©πœ•Ξ©2∩𝐾 and 𝐿π‘₯=πœ†π‘π‘₯ for some πœ†βˆˆ(0,1), then 𝑁π‘₯=πœ†βˆ’1𝐿π‘₯ and (πœ†βˆ’1)2‖𝑁π‘₯β€–2=‖𝐿π‘₯βˆ’π‘π‘₯β€–2β‰₯‖𝑁π‘₯β€–2βˆ’β€–πΏπ‘₯β€–2=ξ€·1βˆ’πœ†2‖𝑁π‘₯β€–2,(2.15) by condition (𝐢2)β€²; that is, (πœ†βˆ’1)2β‰₯1βˆ’πœ†2, contradicting the fact that πœ†βˆˆ(0,1). This completes the proof of Corollary 2.9.

The following lemma can be found by (π‘Ž) of [32, Lemma  2].

Lemma 2.10. Suppose either 𝑁 or 𝐿1βˆ’1 is compact, then πΏβˆ’πœ†π‘ is A-proper for πœ†βˆˆ[0,1].

3. Main Results

The goal of this section is to apply Lemma 2.8 to discuss the existence and multiplicity of positive solutions for the PBVP (1.1).

Let 𝑋={π‘₯∈𝐢[0,1]∢π‘₯ξ…žξ…žβˆˆπΆ[0,1],π‘₯(0)=π‘₯(1),π‘₯ξ…ž(0)=π‘₯ξ…ž(1)} endowed with the norm β€–π‘₯‖𝑋=maxπ‘‘βˆˆ[0,1]|π‘₯(𝑑)|, and let π‘Œ=𝐢[0,1] with the norm β€–π‘¦β€–π‘Œ=maxπ‘‘βˆˆ[0,1]|𝑦(𝑑)| and 𝐾={π‘₯βˆˆπ‘‹βˆΆπ‘₯(𝑑)β‰₯0,π‘‘βˆˆ[0,1]}, then 𝐾 is a cone of 𝑋.

We definedom𝐿=𝑋,𝐿∢domπΏβŸΆπ‘Œ,𝐿π‘₯(𝑑)=βˆ’π‘₯ξ…žξ…ž(𝑑),π‘βˆΆπ‘‹βŸΆπ‘Œ,𝑁π‘₯(𝑑)=βˆ’π‘“(𝑑,π‘₯(𝑑)),(3.1) then PBVP (1.1) can be written as𝐿π‘₯=𝑁π‘₯,π‘₯∈𝐾.(3.2)

It is easy to check that[]ξ‚»ξ€œKer𝐿={π‘₯∈dom𝐿∢π‘₯(𝑑)≑𝑐on0,1,π‘βˆˆβ„},Im𝐿=π‘¦βˆˆπ‘ŒβˆΆ10ξ‚Ό,𝑦(𝑠)𝑑𝑠=0dimKer𝐿=codimIm𝐿=1,(3.3) so that 𝐿 is a Fredholm operator of index zero.

Next, define the projections π‘ƒβˆΆπ‘‹β†’π‘‹ byξ€œπ‘ƒπ‘₯=10π‘₯(𝑠)𝑑𝑠(3.4) and π‘„βˆΆπ‘Œβ†’π‘Œ byξ€œπ‘„π‘¦=10𝑦(𝑠)𝑑𝑠.(3.5)

Furthermore, we define the isomorphism 𝐽∢Im𝑄→Im𝑃 as 𝐽𝑦=𝛽𝑦, where 𝛽=1/24. It is easy to verify that the inverse operator 𝐿1βˆ’1∢Im𝐿→dom𝐿∩Ker𝑃 of 𝐿|dom𝐿∩Kerπ‘ƒβˆΆdom𝐿∩Ker𝑃→Im𝐿 as (𝐿1βˆ’1βˆ«π‘¦)(𝑑)=10𝐺(𝑠,𝑑)𝑦(𝑠)𝑑𝑠, where⎧βŽͺ⎨βŽͺβŽ©π‘ πΊ(𝑠,𝑑)=21(1βˆ’2𝑑+𝑠),0≀𝑠<𝑑≀1,2(1βˆ’π‘ )(2π‘‘βˆ’π‘ ),0≀𝑑≀𝑠≀1.(3.6)

For notational convenience, we set ∫𝐻(𝑠,𝑑)=1/24+𝐺(𝑠,𝑑)βˆ’10𝐺(𝑠,𝑑)𝑑𝑠 or⎧βŽͺ⎨βŽͺ⎩1𝐻(𝑠,𝑑)=+𝑠242𝑑(1βˆ’2𝑑+𝑠)+22βˆ’π‘‘2+1112,0≀𝑠<𝑑≀1,+1242𝑑(1βˆ’π‘ )(2π‘‘βˆ’π‘ )+22+𝑑2+112,0≀𝑑≀𝑠≀1.(3.7) By routine methods of advanced calculus, we get max𝑠,π‘‘βˆˆ[0,1]𝐻(𝑠,𝑑)=1/8.

Now we can state and prove our main results.

Theorem 3.1. Assume that there exist two positive numbers π‘Ž,𝑏 such that
(𝐻1)𝑓(𝑑,π‘₯)≀π‘₯,π‘“π‘œπ‘Ÿπ‘Žπ‘™π‘™π‘‘βˆˆ[0,1],π‘₯∈[min{π‘Ž,𝑏},max{π‘Ž,𝑏}](𝐻2)if one of the two conditions(i)maxπ‘‘βˆˆ[0,1]𝑓(𝑑,π‘Ž)<0,minπ‘‘βˆˆ[0,1]𝑓(𝑑,𝑏)>0,(ii)minπ‘‘βˆˆ[0,1]𝑓(𝑑,π‘Ž)>0,maxπ‘‘βˆˆ[0,1]𝑓(𝑑,𝑏)<0 is satisfied, then the PBVP (1.1) has at least one positive solution π‘₯βˆ—βˆˆπΎ satisfying min{π‘Ž,𝑏}≀‖π‘₯βˆ—β€–π‘‹β‰€max{π‘Ž,𝑏}.

Proof. It is easy to see π‘Žβ‰ π‘. Without loss of generality, let π‘Ž<𝑏.
First, we note that 𝐿, as so defined, is Fredholm of index zero, 𝐿1βˆ’1 is compact by Arzela-Ascoli theorem, and thus πΏβˆ’πœ†π‘ is A-proper for πœ†βˆˆ[0,1] by (π‘Ž) of Lemma 2.10.
For each π‘₯∈𝐾, then by condition (𝐻1)ξ€œπ‘ƒπ‘₯+𝐽𝑄𝑁π‘₯=101π‘₯(𝑠)π‘‘π‘ βˆ’ξ€œ2410𝑓(𝑠,π‘₯(𝑠))𝑑𝑠β‰₯23ξ€œ2410π‘₯(𝑠)𝑑𝑠β‰₯0,𝑃π‘₯+𝐽𝑄𝑁π‘₯+𝐿1βˆ’1ξ€œ(πΌβˆ’π‘„)𝑁π‘₯=10π‘₯1(𝑠)π‘‘π‘ βˆ’ξ€œ2410𝑓+ξ€œ(𝑠,π‘₯(𝑠))𝑑𝑠10πΊξ‚Έξ€œ(𝑠,𝑑)βˆ’π‘“(𝑠,π‘₯(𝑠))+10𝑓=ξ€œ(𝑠,π‘₯(𝑠))𝑑𝑠𝑑𝑠10ξ€œπ‘₯(𝑠)π‘‘π‘ βˆ’10β‰₯ξ€œπ»(𝑠,𝑑)𝑓(𝑠,π‘₯(𝑠))𝑑𝑠10(1βˆ’π»(𝑠,𝑑))π‘₯(𝑠)𝑑𝑠β‰₯0.(3.8)
This implies that condition (𝐢1) of Lemma 2.8 is satisfied. To apply Lemma 2.8, we should define two open bounded subsets Ξ©1,Ξ©2 of 𝑋 so that (𝐢2)–(𝐢5) of Lemma 2.8 hold.
We prove only Case (𝐻2)(i). In the same way, we can prove Case (𝐻2)(ii).
Let Ξ©1=ξ€½π‘₯βˆˆπ‘‹βˆΆβ€–π‘₯‖𝑋<π‘Ž,Ξ©2=ξ€½π‘₯βˆˆπ‘‹βˆΆβ€–π‘₯‖𝑋<𝑏.(3.9) Clearly, Ξ©1 and Ξ©2 are bounded and open sets and πœƒβˆˆΞ©1βŠ‚Ξ©1βŠ‚Ξ©2.(3.10) Next we show that (𝐻2)(i) implies (𝐢2). For this purpose, suppose that there exist π‘₯0βˆˆπΎβˆ©πœ•Ξ©2 and πœ†0∈(0,1] such that 𝐿π‘₯0=πœ†0𝑁π‘₯0 then π‘₯0ξ…žξ…ž(𝑑)=πœ†0𝑓(𝑑,π‘₯0(𝑑)) for all π‘‘βˆˆ[0,1]. Let 𝑑0∈[0,1], such that π‘₯0(𝑑0)=maxπ‘‘βˆˆ[0,1]π‘₯0(𝑑)=𝑏. From boundary conditions, we have 𝑑0∈[0,1). Then we have the following two cases. Case 1 (𝑑0=0). In this case, π‘₯ξ…ž0(0)≀0,π‘₯ξ…ž0(1)β‰₯0. Since boundary condition π‘₯ξ…ž0(0)=π‘₯ξ…ž0(1), we have π‘₯ξ…ž0(0)=π‘₯ξ…ž0(1)=0. So we have π‘₯0ξ…žξ…ž(0)=πœ†0𝑓(0,π‘₯0(0))=πœ†0𝑓(0,𝑏)>0. It follows from π‘₯0ξ…žξ…ž(𝑑) being continuous in [0,1] that there exists π›Ώβˆˆ(0,1), such that π‘₯0ξ…žξ…ž(𝑑)>0 when π‘‘βˆˆ(0,𝛿]. Thus, π‘₯ξ…ž0(𝑑)=π‘₯ξ…ž0∫(0)+𝑑0π‘₯0ξ…žξ…ž(𝑠)𝑑𝑠>0. Hence, π‘₯0(𝑑)=π‘₯0(ξ€œ0)+𝑑0π‘₯ξ…ž0(𝑠)𝑑𝑠>π‘₯0(],0),π‘‘βˆˆ(0,𝛿(3.11) and π‘₯0(0) is not the maximum on [0,1], a contradiction.Case 2 (𝑑0∈(0,1)). In this case, π‘₯ξ…ž0(𝑑0)=0,π‘₯0ξ…žξ…ž(𝑑0)≀0. This gives 0β‰₯π‘₯0ξ…žξ…žξ€·π‘‘0ξ€Έ=πœ†0𝑓𝑑0𝑑,π‘₯0ξ€Έξ€Έ=πœ†0𝑓𝑑0ξ€Έ,𝑏>0,(3.12) which contradicts (𝐻2)(i). So for each π‘₯βˆˆπœ•Ξ©2∩𝐾 and πœ†βˆˆ(0,1], we have 𝐿π‘₯β‰ πœ†π‘π‘₯. Thus, (𝐢2) of Lemma 2.8 is satisfied.
To prove (𝐢4) of Lemma 2.8, we define the bilinear form [β‹…,β‹…]βˆΆπ‘ŒΓ—π‘‹β†’β„ as []=ξ€œπ‘¦,π‘₯10𝑦(𝑑)π‘₯(𝑑)𝑑𝑑.(3.13) It is clear that [β‹…,β‹…] is continuous and satisfies [𝑦,π‘₯]=0 for every π‘₯∈Ker𝐿,π‘¦βˆˆIm𝐿. In fact, for any π‘₯∈Ker𝐿 and π‘¦βˆˆIm𝐿, we have π‘₯≑𝑐, a constant, and there exists π‘₯βˆˆπ‘‹ such that 𝑦(𝑑)=βˆ’π‘₯ξ…žξ…ž(𝑑) for each π‘‘βˆˆ[0,1]. By π‘₯β€²(0)=π‘₯β€²(1), we get []=ξ€œπ‘¦,π‘₯10ξ€œπ‘¦(𝑑)π‘₯(𝑑)𝑑𝑑=βˆ’π‘10π‘₯ξ…žξ…ž(𝑑)𝑑𝑑=0.(3.14) Let π‘₯∈KerπΏβˆ©πœ•Ξ©2∩𝐾, then π‘₯(𝑑)≑𝑏, so we have by condition (𝐻2)(i) ξ€œπ‘„π‘π‘₯=βˆ’10[]𝑓(𝑑,𝑏)𝑑𝑑≠0,𝑄𝑁π‘₯,π‘₯=βˆ’10𝑓(𝑑,𝑏)𝑑𝑑⋅𝑏𝑑𝑠<0.(3.15) Thus, (𝐢3) and (𝐢4) of Lemma 2.8 are verified.
Finally, we prove (𝐢5) of Lemma 2.8 is satisfied. We may suppose that 𝐿π‘₯≠𝑁π‘₯,forallπ‘₯βˆˆπœ•Ξ©1∩𝐾. Otherwise, the proof is completed.

Let 𝑒≑1∈𝐾1⧡{πœƒ}. We claim that 𝐿π‘₯βˆ’π‘π‘₯β‰ πœ‡π‘’,βˆ€π‘₯βˆˆπœ•Ξ©1∩𝐾,πœ‡β‰₯0.(3.16) In fact, if not, there exist π‘₯2βˆˆπœ•Ξ©1∩𝐾,πœ‡1>0, such that 𝐿π‘₯2βˆ’π‘π‘₯2=πœ‡1.(3.17) Since 𝑄𝐿=πœƒ, operating on both sides of the latter equation by 𝑄, we obtain𝑄𝑁π‘₯2+π‘„πœ‡1=0,(3.18) that is, ξ€œ10ξ€·ξ€·βˆ’π‘“π‘‘,π‘₯2ξ€Έ+πœ‡1𝑑𝑑=0.(3.19) For any π‘₯2βˆˆπœ•Ξ©1∩𝐾, we have β€–π‘₯2‖𝑋=π‘Ž. Then there exists 𝑑1∈[0,1], such that π‘₯2(𝑑1)=π‘Ž. By condition (𝐻2)(i) and πœ‡1>0, ξ€œ10ξ€·ξ€·βˆ’π‘“π‘‘,π‘₯2𝑑1ξ€Έξ€Έ+πœ‡1ξ€Έξ€œπ‘‘π‘‘=10ξ€·βˆ’π‘“(𝑑,π‘Ž)+πœ‡1𝑑𝑑>0,(3.20) in contradiction to (3.19). So (3.16) holds; that is, (𝐢5) of Lemma 2.8 is verified.
Thus, all conditions of Lemma 2.8 are satisfied and there exists π‘₯∈𝐾∩(Ξ©2⧡Ω1) such that 𝐿π‘₯=𝑁π‘₯ and the assertion follows. Thus, π‘₯βˆ—βˆˆπΎ and π‘Žβ‰€β€–π‘₯βˆ—β€–π‘‹β‰€π‘.

Let [𝑐] be the integer part of 𝑐. The following result concerns the existence of 𝑛 positive solutions.

Theorem 3.2. Assume that there exist 𝑛+1 positive numbers π‘Ž1<π‘Ž2<β‹―<π‘Žπ‘›+1 such that
(𝐻1)ξ…žπ‘“(𝑑,π‘₯)≀π‘₯,π‘“π‘œπ‘Ÿπ‘Žπ‘™π‘™π‘‘βˆˆ[0,1],π‘₯∈[π‘Ž1,π‘Žπ‘›+1], (𝐻2)β€²if one of the two conditions(i)maxπ‘‘βˆˆ[0,1]𝑓(𝑑,π‘Ž2π‘–βˆ’1)<0,𝑖=1,2,…,[(𝑛+2)/2], minπ‘‘βˆˆ[0,1]𝑓(𝑑,π‘Ž2𝑖)>0,𝑖=1,2,…,[(𝑛+1)/2](ii)minπ‘‘βˆˆ[0,1]𝑓(𝑑,π‘Ž2π‘–βˆ’1)>0,𝑖=1,2,…,[(𝑛+2)/2], minπ‘‘βˆˆ[0,1]𝑓(𝑑,π‘Ž2𝑖)<0,𝑖=1,2,…,[(𝑛+1)/2] is satisfied, then the PBVP (1.1) has at least 𝑛 positive solutions π‘₯βˆ—π‘–βˆˆπΎ,𝑖=1,2,…,𝑛 satisfying π‘Žπ‘–<β€–π‘₯βˆ—π‘–β€–π‘‹<π‘Žπ‘–+1.

Proof. Modeling the proof of Theorem 3.1, we can prove that if there exist two positive numbers π‘Ž,𝑏 such that maxπ‘‘βˆˆ[0,1]𝑓(𝑑,π‘Ž)<0,minπ‘‘βˆˆ[0,1]𝑓(𝑑,𝑏)>0, then PBVP (1.1) has at least one positive solution π‘₯βˆ—βˆˆπΎ satisfying min{π‘Ž,𝑏}<β€–π‘₯βˆ—β€–π‘‹<max{π‘Ž,𝑏}.
By the claim, for every pair of positive numbers {π‘Žπ‘–,π‘Žπ‘–+1},𝑖=1,2,…,𝑛, (1.1) has at least 𝑛 positive solutions π‘₯βˆ—π‘–βˆˆπΎ satisfying π‘Žπ‘–<β€–π‘₯βˆ—π‘–β€–π‘‹<π‘Žπ‘–+1.

We have the following existence result for two positive solutions.

Corollary 3.3. Assume that there exist three positive numbers π‘Ž1<π‘Ž2<π‘Ž3 such that (𝐻1)ξ…žξ…žπ‘“(𝑑,π‘₯)≀π‘₯,π‘“π‘œπ‘Ÿπ‘Žπ‘™π‘™π‘‘βˆˆ[0,1],π‘₯∈[π‘Ž1,π‘Ž3], (𝐻2)ξ…žξ…žif one of the two conditions(i)maxπ‘‘βˆˆ[0,1]𝑓(𝑑,π‘Ž1)<0,minπ‘‘βˆˆ[0,1]𝑓(𝑑,π‘Ž2)>0, maxπ‘‘βˆˆ[0,1]𝑓(𝑑,π‘Ž3)<0,(ii)minπ‘‘βˆˆ[0,1]𝑓(𝑑,π‘Ž1)>0,maxπ‘‘βˆˆ[0,1]𝑓(𝑑,π‘Ž2)<0,minπ‘‘βˆˆ[0,1]𝑓(𝑑,π‘Ž3)>0is satisfied, then the PBVP (1.1) has at least two positive solutions π‘₯βˆ—1,π‘₯βˆ—2∈𝐾 satisfying π‘Ž1≀‖π‘₯βˆ—1‖𝑋<π‘Ž2<β€–π‘₯βˆ—2β€–π‘‹β‰€π‘Ž3.

We also have the following existence result for three positive solutions.

Corollary 3.4. Assume that there exist four positive numbers π‘Ž1<π‘Ž2<π‘Ž3<π‘Ž4 such that(𝐻1)ξ…žξ…žξ…žπ‘“(𝑑,π‘₯)≀π‘₯,π‘“π‘œπ‘Ÿπ‘Žπ‘™π‘™π‘‘βˆˆ[0,1],π‘₯∈[π‘Ž1,π‘Ž4], (𝐻2)ξ…žξ…žξ…žif one of the two conditions(i)maxπ‘‘βˆˆ[0,1]𝑓(𝑑,π‘Ž1)<0,minπ‘‘βˆˆ[0,1]𝑓(𝑑,π‘Ž2)>0,maxπ‘‘βˆˆ[0,1]𝑓(𝑑,π‘Ž3)<0, minπ‘‘βˆˆ[0,1]𝑓(𝑑,π‘Ž4)>0, and (ii)minπ‘‘βˆˆ[0,1]𝑓(𝑑,π‘Ž1)>0, maxπ‘‘βˆˆ[0,1]𝑓(𝑑,π‘Ž2)<0,minπ‘‘βˆˆ[0,1]𝑓(𝑑,π‘Ž3)>0, maxπ‘‘βˆˆ[0,1]𝑓(𝑑,π‘Ž4)<0,is satisfied, then the PBVP (1.1) has at least three positive solutions π‘₯βˆ—1,π‘₯βˆ—2,π‘₯βˆ—3∈𝐾 satisfying π‘Ž1≀‖π‘₯βˆ—1‖𝑋<π‘Ž2<β€–π‘₯βˆ—2‖𝑋<π‘Ž3<β€–π‘₯βˆ—3β€–π‘‹β‰€π‘Ž4.

Remark 3.5. From similar arguments and techniques, we can also deal with the following periodic boundary value problem (PBVP) βˆ’π‘₯ξ…žξ…ž(𝑑)=𝑓(𝑑,π‘₯),0<𝑑<1,π‘₯(0)=π‘₯(1),π‘₯ξ…ž(0)=π‘₯ξ…ž(1).(3.21) We can also verify that the similar results presented in this paper are valid for PBVP (3.21); we omit the details here.

4. Some Examples

In this section, we give some examples to illustrate the main results of the paper.

Example 4.1. Consider the following second-order periodic boundary value problem (PBVP): π‘₯ξ…žξ…ž4(𝑑)=5𝑑2βˆ’π‘‘βˆ’1ξ€Έξ€·2π‘₯3+3π‘₯2ξ€Έπ‘₯βˆ’12π‘₯+6π‘₯,0<𝑑<1,(0)=π‘₯(1),π‘₯ξ…ž(0)=π‘₯ξ…ž(1),(4.1) where 𝑓(𝑑,π‘₯(𝑑))=(𝑑2βˆ’π‘‘βˆ’1)(2π‘₯3+3π‘₯2βˆ’12π‘₯+6)π‘₯. In this case, 𝑓(𝑑,π‘₯)≀π‘₯,π‘₯β‰₯0,0≀𝑑≀1.
Corresponding to the assumptions of Corollary 3.3, we set π‘Ž1=1/2,π‘Ž2=1, and π‘Ž3=2. It is easy to check that the other conditions of Corollary 3.3 are satisfied; hence, PBVP (4.1) has at least two positive solutions π‘₯βˆ—1,π‘₯βˆ—2 satisfying 1/2≀‖π‘₯βˆ—1‖𝑋<1<β€–π‘₯βˆ—2‖𝑋≀2.

Example 4.2. Consider the periodic boundary value problem (PBVP) π‘₯ξ…žξ…ž(𝑑)=5𝑑+2π‘₯10sinπ‘₯,0<𝑑<1,(0)=π‘₯(1),π‘₯ξ…ž(0)=π‘₯ξ…ž(1).(4.2) Now, let 𝑓(𝑑,π‘₯)=((5𝑑+2)/10)sinπ‘₯; thus, 𝑓(𝑑,π‘₯)≀π‘₯,π‘₯β‰₯0,0≀𝑑≀1. Set π‘Ž1=πœ‹/2,π‘Ž2=3πœ‹/2,π‘Ž3=5πœ‹/2,π‘Ž4=7πœ‹/2. Then Corollary 3.4 ensures that there exist at least three positive solutions π‘₯βˆ—1,π‘₯βˆ—2,π‘₯βˆ—3 satisfying πœ‹/2≀‖π‘₯βˆ—1‖𝑋<3πœ‹/2<β€–π‘₯βˆ—2‖𝑋<5πœ‹/2<β€–π‘₯βˆ—3‖𝑋≀7πœ‹/2.

Acknowledgments

The project is supported financially by the National Science Foundation of china (10971179) and the Natural Science Foundation of Changzhou university (JS201008).