Abstract

Necessary and sufficient conditions for the existence of variational principles for a given wide class of evolutionary differential-difference operator equation are obtained. The theoretic results are illustrated by two examples.

1. Introduction

We consider the equation:𝑁(𝑒)=0,π‘’βˆˆπ·(𝑁),(1.1)

where 𝐷(𝑁) is a domain of the definition of the operator π‘βˆΆπ·(𝑁)βŠ†π‘ˆβ†’π‘‰, and π‘ˆ,𝑉 are normed linear spaces over the field of real numbers ℝ.

Later, we will assume that at every point π‘’βˆˆπ·(𝑁), there exists the GΓ’teaux derivative π‘ξ…žπ‘’ of 𝑁 defined by the formula (𝑑/π‘‘πœ–)𝑁(𝑒+πœ–β„Ž)|πœ–=0=𝛿𝑁(𝑒,β„Ž)=π‘ξ…žπ‘’β„Ž.

The operator π‘βˆΆπ·(𝑁)→𝑉 is said to be potential [1] on the set 𝐷(𝑁) relative to a given bilinear form Ξ¦(β‹…,β‹…)βˆΆπ‘‰Γ—π‘ˆβ†’π‘…, if there exists a functional πΉπ‘βˆΆπ·(𝐹𝑁)=𝐷(𝑁)→𝑅 such that𝛿𝐹𝑁[]𝑁𝑒,β„Ž=Ξ¦(𝑁(𝑒),β„Ž),βˆ€π‘’βˆˆπ·(𝑁),βˆ€β„Žβˆˆπ·ξ…žπ‘’ξ€Έ.(1.2)

In that case, we also say that the given equation admits the direct variational formulation.

A problem of the construction of the functional 𝐹𝑁 upon the given operator 𝑁 is known as the classical inverse problem of the calculus of variations [1]. Note that practically no one has been solving inverse problem of the calculus of variations for partial differential-difference operators until recently [2–4]. Let us also note that for a wide classes of partial differential equations, there has been developped the problem of recongnition of variationality upon the structure of corresponding operators [5, 6]. There is a theoretical and practical interst in the extention of these results on partial differential-difference equations [7–9].

For what follows, we suppose that 𝐷(𝑁) is a convex set, and we also need the following potentiality criterion [1]: Ξ¦ξ€·π‘ξ…žπ‘’ξ€Έξ€·π‘β„Ž,𝑔=Ξ¦ξ…žπ‘’ξ€Έξ€·π‘π‘”,β„Ž,βˆ€π‘’βˆˆπ·(𝑁),βˆ€β„Ž,π‘”βˆˆπ·ξ…žπ‘’ξ€Έ.(1.3) Under this condition, the potential 𝐹𝑁 is given by𝐹𝑁[𝑒]=ξ€œ10Φ𝑁𝑒0ξ€·+πœ†π‘’βˆ’π‘’0ξ€Έξ€Έ,π‘’βˆ’π‘’0ξ€Έπ‘‘πœ†+const,(1.4)

where 𝑒0 is a fixed element of D(N).

The functional 𝐹𝑁 is called the potential of the operator 𝑁, and in turn the operator 𝑁 is called the gradient of the functional 𝐹𝑁.

2. Statement of the Problem

Let us consider the following differential-difference operator equation: 𝑁(𝑒)≑1ξ“πœ†=βˆ’1π‘ƒπœ†(𝑑)𝑒𝑑𝑑(𝑑+πœ†πœ)+𝑄(𝑑,𝑒(𝑑+πœ†πœ))=0,π‘’βˆˆπ·(𝑁),π‘‘βˆˆ0,𝑑1ξ€»βŠ‚β„.(2.1)

Here, π‘ƒπœ†βˆΆπ‘ˆ1→𝑉1(πœ†=βˆ’1,0,1) are linear operators depending on 𝑑;π‘„βˆΆ[𝑑0βˆ’πœ,𝑑1+𝜏]Γ—π‘ˆ13→𝑉1 is in general a nonlinear operator;π‘βˆΆπ·(𝑁)βŠ†π‘ˆβ†’π‘‰;π‘ˆ=𝐢1([𝑑0βˆ’πœ,𝑑1+𝜏];π‘ˆ1);𝑉=𝐢([𝑑0βˆ’πœ,𝑑1+𝜏];𝑉1), where π‘ˆ1,𝑉1 are real normed linear spaces, π‘ˆ1βŠ†π‘‰1.

The domain of definition 𝐷(𝑁) is given by the equality: 𝐷(𝑁)=π‘’βˆˆπ‘ˆβˆΆπ‘’(𝑑)=πœ‘1𝑑(𝑑),π‘‘βˆˆ0βˆ’πœ,𝑑0ξ€»,𝑒(𝑑)=πœ‘2𝑑(𝑑),π‘‘βˆˆ1,𝑑1+πœξ€»ξ€Ύ,(2.2) where πœ‘π‘–,(𝑖=1,2) are given functions.

Under the solution of (2.1), we mean a function π‘’βˆˆπ·(𝑁) satisfying the identity: 𝑁(𝑒)≑1ξ“πœ†=βˆ’1π‘ƒπœ†(𝑑)𝑒𝑑𝑑(𝑑+πœ†πœ)+𝑄(𝑑,𝑒(𝑑+πœ†πœ))=0,βˆ€π‘‘βˆˆ0,𝑑1ξ€»βŠ‚β„.(2.3)

Let us give the following bilinear form: ξ€œΞ¦(β‹…,β‹…)≑𝑑1𝑑0βŸ¨β‹…,β‹…βŸ©π‘‘π‘‘βˆΆπ‘‰Γ—π‘ˆβŸΆβ„,(2.4) where the bilinear mapping Ξ¦1β‰‘βŸ¨β‹…,β‹…βŸ© satisfies the following conditions: βŸ¨π‘£1,𝑣2⟩=βŸ¨π‘£2,𝑣1⟩,βˆ€π‘£1,𝑣2βˆˆπ‘‰1,π·π‘‘βŸ¨π‘£,π‘”βŸ©=βŸ¨π·π‘‘π‘£,π‘”βŸ©+βŸ¨π‘£,π·π‘‘π‘”βŸ©,βˆ€π‘£,π‘”βˆˆπ‘‰.(2.5)

Our aim is to define the structure of operators π‘ƒπœ†(πœ†=βˆ’1,0,1) and 𝑄 under which (2.1) allows the solution of the inverse problem of the calculus of variations relative to the bilinear form (2.4) such that 𝐷𝑑=𝑑/𝑑𝑑 is the antisymmetric operator on 𝐷(π‘ξ…žπ‘’), that is, Ξ¦ξ€·π·π‘‘β„Ž1,β„Ž2𝐷=βˆ’Ξ¦π‘‘β„Ž2,β„Ž1ξ€Έ,βˆ€β„Ž1,β„Ž2ξ€·π‘βˆˆπ·ξ…žπ‘’ξ€Έ.(2.6)

3. Conditions of Potentiality and the Structure of (2.1) in the Case of Its Variationality

We denote by πΎβˆ— the operator adjoint to 𝐾.

Theorem 3.1. If π·βˆ—π‘‘=βˆ’π·π‘‘ on the set 𝐷(π‘ξ…žπ‘’), then for the existence of the direct variational formulation for the operator (2.1) on the set 𝐷(𝑁) relative to (2.4), it is necessary and sufficient that the following conditions hold on the set 𝐷(π‘ξ…žπ‘’): π‘ƒβˆ’πœ†+π‘ƒβˆ—πœ†|π‘‘β†’π‘‘βˆ’πœ†πœ=0,πœ•π‘ƒβˆ—πœ†||||πœ•π‘‘π‘‘β†’π‘‘βˆ’πœ†πœ+π‘„ξ…žπ‘’(π‘‘βˆ’πœ†πœ)βˆ’π‘„ξ…žβˆ—π‘’(𝑑+πœ†πœ)||π‘‘β†’π‘‘βˆ’πœ†πœξ€·π‘‘=0,πœ†=βˆ’1,0,1,βˆ€π‘’βˆˆπ·(𝑁),βˆ€π‘‘βˆˆ0,𝑑1ξ€Έ.(3.1)

Proof. Taking into account formula (2.1), we get π‘ξ…žπ‘’β„Ž=1ξ“πœ†=βˆ’1π‘ƒπœ†β„Žπ‘‘(𝑑+πœ†πœ)+1ξ“πœ†=βˆ’1π‘„ξ…žπ‘’(𝑑+πœ†πœ)β„Ž(𝑑+πœ†πœ).(3.2) The criterion of potentiality takes the following form: ξ€œπ‘‘1𝑑0ξ„”1ξ“πœ†=βˆ’1ξ‚†π‘ƒπœ†β„Žπ‘‘(𝑑+πœ†πœ)+π‘„ξ…žπ‘’(𝑑+πœ†πœ)=ξ€œβ„Ž(𝑑+πœ†πœ),𝑔(𝑑)𝑑𝑑𝑑1𝑑0ξ„”1ξ“πœ†=βˆ’1ξ‚†π‘ƒπœ†π‘”π‘‘(𝑑+πœ†πœ)+π‘„ξ…žπ‘’(𝑑+πœ†πœ)𝑔(𝑑+πœ†πœ),β„Ž(𝑑)𝑑𝑑,(3.3) or ξ€œπ‘‘1𝑑01ξ“πœ†=βˆ’1ξ‚†π‘ƒπœ†β„Žπ‘‘(𝑑+πœ†πœ)+π‘„ξ…žπ‘’(𝑑+πœ†πœ)ξ‚‡ξ„•βˆ’ξ„”β„Ž(𝑑+πœ†πœ),𝑔(𝑑)1ξ“πœ†=βˆ’1ξ‚€π‘ƒπœ†π‘”π‘‘(𝑑+πœ†πœ)+π‘„ξ…žπ‘’(𝑑+πœ†πœ)𝑁𝑔(𝑑+πœ†πœ),β„Ž(𝑑)𝑑𝑑=0,βˆ€π‘’βˆˆπ·(𝑁),βˆ€π‘”,β„Žβˆˆπ·ξ…žπ‘’ξ€Έ.(3.4) Bearing into account the condition π·βˆ—π‘‘=βˆ’π·π‘‘ on the set 𝐷(π‘ξ…žπ‘’), from (3.4), we get ξ€œπ‘‘1𝑑01ξ“πœ†=βˆ’1ξ‚€π‘ƒπœ†π·π‘‘+π‘„ξ…žπ‘’(𝑑+πœ†πœ)ξ‚ξ„•βˆ’β„Ž(𝑑+πœ†πœ),𝑔(𝑑)1ξ“πœ†=βˆ’1ξ‚¬ξ‚ƒβˆ’π·π‘‘ξ€·π‘ƒβˆ—πœ†ξ€Έβ„Ž(𝑑)+π‘„ξ…žβˆ—π‘’(𝑑+πœ†πœ)ξ‚„ξ‚­ξƒ­β„Ž(𝑑),𝑔(𝑑+πœ†πœ)𝑑𝑑=0,(3.5) or ξ€œπ‘‘1𝑑01ξ“πœ†=βˆ’1ξ‚€π‘ƒβˆ’πœ†π·π‘‘+π‘„ξ…žπ‘’(π‘‘βˆ’πœ†πœ)ξ‚ξ„•βˆ’ξ„”β„Ž(π‘‘βˆ’πœ†πœ),𝑔(𝑑)1ξ“πœ†=βˆ’1βˆ’πœ•π‘ƒβˆ—πœ†πœ•π‘‘βˆ’π‘ƒβˆ—πœ†π·π‘‘+π‘„ξ…žπ‘’βˆ—||||π‘‘β†’π‘‘βˆ’πœ†πœβ„Ž(π‘‘βˆ’πœ†πœ),𝑔(𝑑)𝑑𝑑=0.(3.6) Thus, condition (3.4) can be reduced to the following form: ξ€œπ‘‘1𝑑01ξ“πœ†=βˆ’1ξ„”ξ‚€π‘ƒβˆ’πœ†π·π‘‘+π‘„ξ…žπ‘’(π‘‘βˆ’πœ†πœ)ξ‚ξ‚΅βˆ’β„Ž(π‘‘βˆ’πœ†πœ)βˆ’πœ•π‘ƒβˆ—πœ†πœ•π‘‘βˆ’π‘ƒβˆ—πœ†π·π‘‘+π‘„ξ…žπ‘’βˆ—ξ‚Ά||||π‘‘β†’π‘‘βˆ’πœ†πœξ„•ξ€·π‘β„Ž(π‘‘βˆ’πœ†πœ),𝑔(𝑑)𝑑𝑑=0,βˆ€π‘’βˆˆπ·(𝑁),βˆ€π‘”,β„Žβˆˆπ·ξ…žπ‘’ξ€Έ.(3.7) This equality is fulfilled identically if and only if 1ξ“πœ†=βˆ’1ξƒ¬ξ€·π‘ƒβˆ’πœ†+π‘ƒβˆ—πœ†|π‘‘β†’π‘‘βˆ’πœ†πœξ€Έπ·π‘‘+πœ•π‘ƒβˆ—πœ†||||πœ•π‘‘π‘‘β†’π‘‘βˆ’πœ†πœ+π‘„ξ…žπ‘’(π‘‘βˆ’πœ†πœ)βˆ’π‘„ξ…žβˆ—π‘’(𝑑+πœ†πœ)|π‘‘β†’π‘‘βˆ’πœ†πœξƒ­β‹…β„Ž(π‘‘βˆ’πœ†πœ)=0,(3.8) for all π‘’βˆˆπ·(𝑁). Thus, it is necessary and sufficient that conditions (3.1) hold.

Theorem 3.2. Conditions (3.1) are held if and only if (2.1) has the following form: 𝑁1(𝑒)≑1ξ“πœ†=βˆ’1ξ€·π‘…βˆ—πœ†|π‘‘β†’π‘‘βˆ’πœ†πœβˆ’π‘…βˆ’πœ†ξ€Έπ‘’π‘‘ξƒ©(π‘‘βˆ’πœ†πœ)+gradΦ𝐡[𝑒]βˆ’1ξ“πœ†=βˆ’1πœ•π‘…πœ†ξƒͺξ€·π‘πœ•π‘‘π‘’(𝑑+πœ†πœ)=0,βˆ€π‘’βˆˆπ·1𝑑,π‘‘βˆˆ0,𝑑1ξ€»βŠ‚β„.(3.9)
The operators π‘…πœ† and 𝐡 depend on π‘ƒπœ†(𝑑) and 𝑄(𝑑,𝑒(𝑑+πœ†πœ)).

Proof. If π·βˆ—π‘‘=βˆ’π·π‘‘ on the set 𝐷(π‘ξ…ž1𝑒) and conditions (3.1) are held, then according to Theorem 3.1, operator (2.1) is potential on the set 𝐷(𝑁) relative to a given bilinear form (2.4).
Let us consider the following functional:𝐹𝑁[𝑒]=ξ€œπ‘‘1𝑑01ξ“πœ†=βˆ’1π‘…πœ†(𝑑)𝑒(𝑑+πœ†πœ),𝑒𝑑[𝑒]ξƒ­(𝑑)+𝐡𝑑𝑑+𝐹𝑁𝑒0ξ€».(3.10) It is easy to check that 𝛿𝐹𝑁[]=ξ€œπ‘’,β„Žπ‘‘1𝑑0ξ„”1ξ“πœ†=βˆ’1π‘…πœ†β„Ž(𝑑+πœ†πœ),𝑒𝑑+ξ„”(𝑑)1ξ“πœ†=βˆ’1π‘…πœ†π‘’(𝑑+πœ†πœ),β„Žπ‘‘ξ„•(𝑑)+⟨gradΦ𝐡[𝑒]=ξ€œ,β„Ž(𝑑)βŸ©π‘‘π‘‘π‘‘1𝑑0ξ„”1ξ“πœ†=βˆ’1π‘…βˆ—πœ†|π‘‘β†’π‘‘βˆ’πœ†πœπ‘’π‘‘ξ„•βˆ’ξ„”(π‘‘βˆ’πœ†πœ),β„Ž(𝑑)1ξ“πœ†=βˆ’1π·π‘‘ξ€·π‘…πœ†ξ€Έξ„•π‘’(𝑑+πœ†πœ),β„Ž(𝑑)+⟨gradΦ𝐡[𝑒]=ξ€œ,β„Ž(𝑑)βŸ©π‘‘π‘‘π‘‘1𝑑0ξ„”1ξ“πœ†=βˆ’1π‘…βˆ—πœ†|π‘‘β†’π‘‘βˆ’πœ†πœπ‘’π‘‘ξ„•βˆ’ξ„”(π‘‘βˆ’πœ†πœ),β„Ž(𝑑)1ξ“πœ†=βˆ’1πœ•π‘…πœ†ξ„•βˆ’ξ„”πœ•π‘‘π‘’(𝑑+πœ†πœ),β„Ž(𝑑)1ξ“πœ†=βˆ’1π‘…βˆ’πœ†π‘’π‘‘ξ„•(π‘‘βˆ’πœ†πœ),β„Ž(𝑑)+⟨gradΦ𝐡[𝑒]=ξ€œ,β„ŽβŸ©π‘‘π‘‘π‘‘1𝑑0ξ„”1ξ“πœ†=βˆ’1ξ€·π‘…βˆ—πœ†|π‘‘β†’π‘‘βˆ’πœ†πœβˆ’π‘…βˆ’πœ†ξ€Έπ‘’π‘‘(+ξƒ©π‘‘βˆ’πœ†πœ)gradΦ𝐡[𝑒]βˆ’1ξ“πœ†=βˆ’1πœ•π‘…πœ†ξƒͺξ„•=ξ€œπœ•π‘‘π‘’(𝑑+πœ†πœ),β„Ž(𝑑)𝑑𝑑𝑑1𝑑0ξ€·π‘βŸ¨π‘(𝑒),β„ŽβŸ©π‘‘π‘‘,βˆ€π‘’βˆˆπ·(𝑁),βˆ€β„Žβˆˆπ·ξ…žπ‘’ξ€Έ.(3.11) Then functional (3.10) is a potential of evolutionary operator (2.1).
If π·βˆ—π‘‘=βˆ’π·π‘‘ on 𝐷(π‘ξ…žπ‘’), thenπ‘ƒβˆ’πœ†(𝑑)=π‘…βˆ—πœ†|π‘‘β†’π‘‘βˆ’πœ†πœβˆ’π‘…βˆ’πœ†,𝑄(𝑑,𝑒(𝑑+πœ†πœ))=βˆ’1ξ“πœ†=βˆ’1πœ•π‘…πœ†πœ•π‘‘π‘’(𝑑+πœ†πœ)+gradΦ𝐡[𝑒].(3.12)
This theorem shows the structure of the given kind of differential-difference operator, which admits the solution of the inverse problem of the calculus of variations.

4. Examples

Example 4.1. Let us consider the evolutionary differential-difference equation with partial derivatives in the following form: 𝑁1(𝑒)≑1ξ“πœ†=βˆ’1ξ‚΅π‘Žπœ†(π‘₯,𝑑)πœ•π‘’πœ•π‘‘(π‘₯,𝑑+πœ†πœ)βˆ’π‘πœ†π‘–π‘—πœ•(π‘₯,𝑑)2π‘’πœ•π‘₯π‘–πœ•π‘₯𝑗(π‘₯,𝑑+πœ†πœ)=0,(4.1) where (π‘₯,𝑑)βˆˆπ‘„=Ω×(𝑑0,𝑑1),𝑑1βˆ’π‘‘0>2𝜏,𝑖,𝑗=1,𝑛,π‘Žπœ†(π‘₯,𝑑)∈𝐢0,1π‘₯,𝑑(𝑄),π‘πœ†π‘–π‘—(π‘₯,𝑑)∈𝐢2,0π‘₯,𝑑(𝑄).
Ξ© is a bounded domain in ℝ𝑛 with piecewise smooth boundary πœ•Ξ©.
The domain of definition 𝐷(𝑁1) is given by the equality: 𝐷𝑁1ξ€Έ=ξƒ―π‘’βˆˆπ‘ˆ=𝐢2,1π‘₯,𝑑𝑑Ω×0βˆ’πœ,𝑑1+πœβˆΆπ‘’(π‘₯,𝑑)=πœ‘1(π‘₯,𝑑),(π‘₯,𝑑)∈𝐸1=𝑑Ω×0βˆ’πœ,𝑑0ξ€»,𝑒(π‘₯,𝑑)=πœ‘2(π‘₯,𝑑),(π‘₯,𝑑)∈𝐸2=𝑑Ω×1,𝑑1ξ€»,πœ•+πœπœ‡π‘’πœ•π‘›πœ‡π‘₯||||πœ•Ξ“πœ=πœ“πœ‡ξƒ°,(π‘₯,𝑑),πœ‡=0,1(4.2) where Ξ“πœ=πœ•Ξ©Γ—[𝑑0βˆ’πœ,𝑑1+𝜏], πœ‘π‘–βˆˆπΆ(𝐸𝑖),(𝑖=0,1),πœ“πœ‡βˆˆπΆ(Ξ“πœ),(πœ‡=0,1) are given functions.
We investigate the existence of variational principle for (4.1) relative to a given bilinear form (2.4).
For (4.1), we get π‘ξ…ž1π‘’β„Ž=1ξ“πœ†=βˆ’1ξ‚€π‘Žπœ†(π‘₯,𝑑)β„Žπ‘‘(π‘₯,𝑑+πœ†πœ)βˆ’π‘πœ†π‘–π‘—(π‘₯,𝑑)β„Žπ‘₯𝑖π‘₯𝑗(π‘₯,𝑑+πœ†πœ).(4.3)
Necessary and sufficient conditions of potentiality take the form: Ξ¦ξ€·π‘ξ…ž1π‘’ξ€Έξ€·π‘β„Ž,π‘”βˆ’Ξ¦ξ…ž1π‘’ξ€Έξ€œπ‘”,β„Žβ‰‘βˆ’π‘‘1𝑑0ξ€œΞ©βŽ§βŽͺ⎨βŽͺβŽ©ξƒ©1ξ“πœ†=βˆ’1π·π‘‘ξ€·π‘Žπœ†ξƒͺ|||||(π‘₯,𝑑)𝑔(π‘₯,𝑑)π‘‘β†’π‘‘βˆ’πœ†πœ+1ξ“πœ†=βˆ’1𝐷π‘₯𝑖π‘₯π‘—π‘πœ†π‘–π‘—(ξƒͺ|||||π‘₯,𝑑)𝑔(π‘₯,𝑑)π‘‘β†’π‘‘βˆ’πœ†πœβŽ«βŽͺ⎬βŽͺβŽ­βˆ’ξ€œβ„Ž(π‘₯,𝑑)𝑑π‘₯𝑑𝑑𝑑1𝑑0ξ€œΞ©1ξ“πœ†=βˆ’1ξ‚†π‘Žπœ†(π‘₯,𝑑)𝑔𝑑(π‘₯,𝑑+πœ†πœ)βˆ’π‘πœ†π‘–π‘—(π‘₯,𝑑)𝑔π‘₯𝑖π‘₯𝑗𝑁(π‘₯,𝑑+πœ†πœ)β‹…β„Ž(π‘₯,𝑑)𝑑π‘₯𝑑𝑑=0,βˆ€π‘’βˆˆπ·1𝑁,βˆ€π‘”,β„Žβˆˆπ·ξ…ž1𝑒.(4.4)
From that, we come to the following: βˆ’1ξ“πœ†=βˆ’1ξ‚€π·π‘‘ξ€·π‘Žπœ†ξ€Έπ‘”(π‘₯,𝑑)βˆ’π·π‘₯𝑖π‘₯π‘—ξ€·π‘πœ†π‘–π‘—ξ€Έξ‚|||𝑔(π‘₯,𝑑)π‘‘β†’π‘‘βˆ’πœ†πœ=1ξ“πœ†=βˆ’1ξ‚†π‘Žπœ†π‘”π‘‘(π‘₯,𝑑+πœ†πœ)βˆ’π‘πœ†π‘–π‘—π‘”π‘₯𝑖π‘₯𝑗,𝑁(π‘₯,𝑑+πœ†πœ)βˆ€π‘”βˆˆπ·ξ…ž1𝑒.(4.5)
That is true if and only if βˆ’π‘Žβˆ’πœ†(π‘₯)=π‘Žπœ†(π‘₯),πœ†=1,βˆ’1,π‘Ž0(π‘₯)=0,π‘πœ†π‘–π‘—||(𝑑)π‘‘β†’π‘‘βˆ’πœ†πœ=π‘π‘–π‘—βˆ’πœ†(𝑑),πœ†=βˆ’1,0,1,𝑖,𝑗=1,𝑛,βˆ€(π‘₯,𝑑)βˆˆπ‘„.(4.6)
Under the fulfilment of that conditions, the corresponding functional is given by 𝐹𝑁1[𝑒]=12ξ€œπ‘‘1𝑑0ξ€œΞ©ξ‚†π‘Ž1(π‘₯)𝑒𝑑(π‘₯,π‘‘βˆ’πœ)𝑒(π‘₯,𝑑)βˆ’π‘Ž1(π‘₯)𝑒𝑑(π‘₯,𝑑+𝜏)𝑒(π‘₯,𝑑)+𝑏1𝑖𝑗(π‘‘βˆ’πœ)𝑒π‘₯𝑖(π‘₯,π‘‘βˆ’πœ)⋅𝑒π‘₯𝑗(π‘₯,𝑑)+𝑏0𝑖𝑗(𝑑)𝑒π‘₯𝑖(π‘₯,𝑑)𝑒π‘₯𝑗(π‘₯,𝑑)+π‘π‘–π‘—βˆ’1(𝑑+𝜏)𝑒π‘₯𝑖(π‘₯,𝑑+𝜏)𝑒π‘₯𝑗(π‘₯,𝑑)𝑑π‘₯𝑑𝑑+const.(4.7)
Let us consider an example when this criterion of potentiality fails.

Example 4.2. Consider the equation: 𝑁2(𝑒)=𝑒𝑑(𝑑,π‘₯)βˆ’2𝑒(𝑑,π‘₯+2𝜏)𝑒π‘₯(𝑑,π‘₯+2𝜏)βˆ’2𝑒π‘₯(𝑑,π‘₯)𝑒(𝑑,π‘₯βˆ’2𝜏)βˆ’2𝑒(𝑑,π‘₯)𝑒π‘₯+1(𝑑,π‘₯βˆ’2𝜏)2𝑒π‘₯π‘₯π‘₯1(𝑑,π‘₯+2𝜏)+2𝑒π‘₯π‘₯π‘₯(𝑑,π‘₯βˆ’2𝜏)=0,(𝑑,π‘₯)βˆˆπ‘„π‘‡=(0,𝑇)Γ—(βˆ’βˆž,+∞).(4.8) Let us note that this equation is a Korteweg-de Vries’ equation 𝜏=0.
We denote 𝐷𝑁2ξ€Έ=ξ‚»π‘’βˆˆπ‘ˆβˆΆπΆ1,3𝑑,π‘₯((0,𝑇)Γ—(βˆ’βˆž,+∞))βˆΆπ‘’|𝑑=0=𝑒0(π‘₯),𝑒|𝑑=𝑇=𝑒1(π‘₯),lim|π‘₯|β†’+βˆžπ·π‘›π‘₯𝑒=0𝑛=.0,3(4.9) It is easy to be convinced that operator (4.8) is not potential on set (4.9) relative to the bilinear form: ξ€œΞ¦(𝑣,𝑔)=𝑇0ξ€œ+βˆžβˆ’βˆžπ‘£(𝑑,π‘₯)⋅𝑔(𝑑,π‘₯)𝑑π‘₯𝑑𝑑,π‘£βˆˆπ‘‰,π‘”βˆˆπ‘ˆ.(4.10) Here, 𝑉={π‘£βˆˆπΆ0,3𝑑,π‘₯((0,𝑇)Γ—(βˆ’βˆž,+∞))∢lim|π‘₯|β†’+βˆžπ·π‘›π‘₯𝑣=0,(𝑛=0,3)}.
We define the integrating operator 𝑀 as βˆ«π‘€π‘£(𝑑,π‘₯)=π‘₯βˆ’βˆžπ‘£(𝑑,𝑦)𝑑𝑦.
Then, the operator, 𝑁(𝑒)≑𝑀𝑁2ξ€œ(𝑒)=π‘₯βˆ’βˆžπ‘’π‘‘(𝑑,𝑦)π‘‘π‘¦βˆ’π‘’2+1(𝑑,π‘₯+2𝜏)βˆ’2𝑒(𝑑,π‘₯)𝑒(𝑑,π‘₯βˆ’2𝜏)2𝑒π‘₯π‘₯1(𝑑,π‘₯+2𝜏)+2𝑒π‘₯π‘₯(𝑑,π‘₯βˆ’2𝜏)𝑑𝑦(4.11)
is potential on set (4.9) relative to bilinear form (4.10). The corresponding functional 𝐹𝑁2[𝑒] has the form: 𝐹𝑁2[𝑒]=12ξ€œπ‘‡0ξ€œ+βˆžβˆ’βˆžξ‚»π‘’ξ€œ(𝑑,π‘₯)π‘₯βˆ’βˆžπ‘’π‘‘(𝑑,𝑦)π‘‘π‘¦βˆ’π‘’π‘₯(𝑑,π‘₯βˆ’πœ)𝑒π‘₯(𝑑,π‘₯+𝜏)βˆ’2𝑒2ξ€Ύ(𝑑,π‘₯+𝜏)𝑒(𝑑,π‘₯βˆ’πœ)𝑑𝑦𝑑π‘₯𝑑𝑑.(4.12)
Indeed, using (4.12), we find that 𝛿𝐹𝑁2[]=ξ€œπ‘’,β„Žπ‘‡0ξ€œ+βˆžβˆ’βˆžξ‚»ξ€œπ‘₯βˆ’βˆžπ‘’π‘‘1(𝑑,𝑦)𝑑𝑦+2𝑒π‘₯π‘₯1(𝑑,π‘₯+2𝜏)+2𝑒π‘₯π‘₯(𝑑,π‘₯βˆ’2𝜏)βˆ’2𝑒(𝑑,π‘₯)𝑒(𝑑,π‘₯βˆ’2𝜏)βˆ’π‘’2𝑁(𝑑,π‘₯+2𝜏)π‘‘π‘¦β„Ž(𝑑,π‘₯)𝑑π‘₯𝑑𝑑,βˆ€π‘’βˆˆπ·(𝑁),βˆ€β„Žβˆˆπ·ξ…žπ‘’ξ€Έ.(4.13)
From the condition 𝛿𝐹𝑁[𝑒,β„Ž]=0,π‘’βˆˆπ·(𝑁), for all β„Žβˆˆπ·(π‘ξ…žπ‘’), we obtain 𝑁(𝑒)≑𝑀𝑁2ξ€œ(𝑒)≑π‘₯βˆ’βˆžπ‘’π‘‘(𝑑,𝑦)π‘‘π‘¦βˆ’π‘’21(𝑑,π‘₯+2𝜏)βˆ’2𝑒(𝑑,π‘₯)𝑒(𝑑,π‘₯βˆ’2𝜏)+2𝑒π‘₯π‘₯+1(𝑑,π‘₯+2𝜏)2𝑒π‘₯π‘₯(𝑑,π‘₯βˆ’2𝜏)𝑑𝑦=0,π‘’βˆˆπ·(𝑁),(4.14) this equation is equivalent to (4.8).
Let us note that the formula ∫𝐼[𝑒]=+βˆžβˆ’βˆž(1/2)𝑒π‘₯(𝑑,π‘₯βˆ’πœ)𝑒π‘₯(𝑑,π‘₯+𝜏)+𝑒2(𝑑,π‘₯+𝜏)𝑒(𝑑,π‘₯βˆ’πœ)𝑑π‘₯ defines the first integral 𝐼[𝑒]=const of (4.8).

Acknowledgment

The work of V. M. Sovchin was partially supported by the Russian Foundation for Basic Research (Projects 09-01-00093 and 09-01-00586).