Abstract

We give in terms of Berezin symbols a characterization of Hardy and Besov classes with a variable exponent.

1. Introduction and Notations

In his book [1, page 96], PavloviΔ‡ proved the following characterization of functions belonging to the classical Hardy space: 𝐻1=𝐻1ξ‚»(𝔻)∢=π‘“βˆˆHol(𝔻)βˆΆβ€–π‘“β€–1=sup0<π‘Ÿ<11ξ€œ2πœ‹02πœ‹||π‘“ξ€·π‘Ÿπ‘’π‘–π‘‘ξ€Έ||𝑑𝑑<∞,(1.1) where π”»βˆΆ={π‘§βˆˆβ„‚βˆΆ|𝑧|<1} is the unit disc of the complex plain β„‚.

Theorem A. For π‘Ž function 𝑓 analytic in 𝔻, the following assertions are equivalent:(a)π‘“βˆˆπ»1; (b)sup𝑛(1/π‘Žπ‘›)βˆ‘π‘›π‘—=0(1/(𝑗+1))‖𝑠𝑗(𝑓)β€–1<∞; (c)sup𝑛‖𝑃𝑛𝑓‖1<∞.
Here, 𝑃𝑛𝑓=(1/π‘Žπ‘›)βˆ‘π‘›π‘—=0(1/(𝑗+1))𝑠𝑗(𝑓), where π‘Žπ‘›=βˆ‘π‘›π‘—=0(1/(𝑗+1))(𝑛=0,1,2,…) and 𝑠𝑗(𝑓) are the partial sums of the Taylor series of 𝑓.

Recently, Popa [2] gave some generalization of this result by proving a similar characterization of upper triangular trace class matrices.

In the present paper, we give in terms of the so-called Berezin symbols a new characterization of analytic functions belonging to the Hardy class 𝐻𝑝(β‹…) and Besov class 𝐡𝑝(β‹…) with a variable exponent. Our results are new even for the usual Hardy and Besov spaces 𝐻𝑝 and 𝐡𝑝.

Recall that the Hardy space 𝐻𝑝=𝐻𝑝(𝔻)(1≀𝑝<∞) is the collection of holomorphic functions in 𝔻 which satisfy the inequalityβ€–π‘“β€–π»π‘ξ‚΅βˆΆ=sup0<π‘Ÿ<11ξ€œ2πœ‹02πœ‹||π‘“ξ€·π‘Ÿπ‘’π‘–π‘‘ξ€Έ||𝑝𝑑𝑑1/𝑝<∞.(1.2) Let 𝑑𝐴(𝑧) be the area measure on 𝔻 normalized so that the area of 𝔻 is 1. In rectangular and polar coordinates,1𝑑𝐴(𝑧)=πœ‹1𝑑π‘₯𝑑𝑦=πœ‹π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ.(1.3) For 1<𝑝<+∞, the Besov space 𝐡𝑝=𝐡𝑝(𝔻) is defined to be the space of analytic functions 𝑓 in such thatβ€–π‘“β€–π΅π‘ξ‚΅ξ€œβˆΆ=𝔻1βˆ’|𝑧|2𝑝||π‘“ξ…ž||(𝑧)π‘ξ‚Άπ‘‘πœ†(𝑧)1/𝑝<∞,(1.4) whereπ‘‘πœ†(𝑧)=𝑑𝐴(𝑧)ξ€·1βˆ’|𝑧|2ξ€Έ2(1.5) is the MΓΆbius invariant measure on 𝔻. We refer to Duren [3] and Zhu [4] for the theory of these spaces.

Let 𝕋=πœ•π”», and let 𝑝=𝑝(𝑑), π‘‘βˆˆπ•‹, be a bounded, positive, measurable function defined on it. Following by Kokilashvili and Paatashvili [5, 6], we say that the analytic in the disc 𝔻 function 𝑓 belongs to the Hardy class 𝐻𝑝(β‹…) ifsup0<π‘Ÿ<1ξ€œ02πœ‹||π‘“ξ€·π‘Ÿπ‘’π‘–πœƒξ€Έ||𝑝(πœƒ)π‘‘πœƒ=𝐢<+∞,(1.6) where 𝑝(πœƒ)=𝑝(π‘’π‘–πœƒ), πœƒβˆˆ[0,2πœ‹).

For 𝑝(πœƒ)=𝑝=const>0, the 𝐻𝑝(β‹…) class coincides with the classical Hardy class 𝐻𝑝.

Analogously, we say that the analytic in 𝔻 function 𝑓 belongs to the Besov class 𝐡𝑝(β‹…) with a variable exponent ifξ€œ02πœ‹ξ€œ10ξ€·1βˆ’π‘Ÿ2𝑝(𝑑)||π‘“ξ…žξ€·π‘Ÿπ‘’π‘–π‘‘ξ€Έ||𝑝(𝑑)π‘Ÿπ‘‘π‘Ÿπ‘‘π‘‘πœ‹<+∞,(1.7) where 𝑝(𝑑)=𝑝(𝑒𝑖𝑑), π‘‘βˆˆ[0,2πœ‹).

For 𝑝(𝑑)=𝑝=const>0, the 𝐡𝑝(β‹…) class coincides with the Besov class 𝐡𝑝.

Suppose that π‘βˆΆ=infπ‘‘βˆˆπ•‹π‘(𝑑), π‘βˆΆ=supπ‘‘βˆˆπ•‹π‘(𝑑). If 𝑝>0, then it is obvious thatπ»π‘βŠ‚π»π‘(β‹…)βŠ‚π»π‘,π΅π‘βŠ‚π΅π‘(β‹…)βŠ‚π΅π‘.(1.8)

Recall that for any bounded linear operator 𝐴 acting in the functional Hilbert space 𝐻=𝐻(Ξ©) over some set Ξ© with reproducing kernel π‘˜πœ†(𝑧), its Berezin symbol 𝐴 is defined byξ‚ξ«π΄Μ‚π‘˜π΄(πœ†)∢=πœ†,Μ‚π‘˜πœ†ξ¬(πœ†βˆˆΞ©),(1.9) where Μ‚π‘˜πœ†βˆΆ=π‘˜πœ†/β€–π‘˜πœ†β€– is the normalized reproducing kernel of 𝐻. (We mention [4, 7–11] as references for the Berezin symbols.)

2. On the Membership of Functions in Hardy and Besov Classes with a Variable Exponent

In this section, we characterize the function classes 𝐻𝑝(β‹…) and 𝐡𝑝(β‹…) in terms of Berezin symbols.

For any bounded sequence {π‘Žπ‘›}𝑛β‰₯0 of complex numbers π‘Žπ‘›, let 𝐷{π‘Žπ‘›} denote the associate diagonal operator acting in the Hardy space 𝐻2 by the formula𝐷{π‘Žπ‘›}𝑧𝑛=π‘Žπ‘›π‘§π‘›,𝑛=0,1,2,….(2.1) It is known that the reproducing kernel of the Hardy space 𝐻2 has the form π‘˜πœ†(𝑧)=1/(1βˆ’πœ†π‘§)(πœ†βˆˆπ”»). Then, it is easy to show that (see [11])𝐷{π‘Žπ‘›}(ξ‚€||πœ†||πœ†)=1βˆ’2ξ‚βˆžξ“π‘˜=0π‘Žπ‘›||πœ†||2π‘˜(πœ†βˆˆπ”»),(2.2) that is, the Berezin symbol of the diagonal operator 𝐷{π‘Žπ‘›} on the Hardy space 𝐻2 is a radial function.

Note that the inequality |𝑓(𝑛)|≀const, 𝑛β‰₯0, is the necessary condition for the function βˆ‘π‘“(𝑧)=βˆžπ‘›=0𝑓(𝑛)𝑧𝑛 to be in the spaces 𝐻𝑝(1β‰€π‘β‰€βˆž). Also note that if π‘“βˆˆπ΅π‘, then 𝑓(𝑛)=𝑂(π‘›βˆ’1/𝑝)(𝑝β‰₯1) (see, for instance, Duren [3] and Zhu [4]).

Our main result is the following theorem.

Theorem 2.1. Let βˆ‘π‘“(𝑧)=βˆžπ‘›=0𝑓(𝑛)π‘§π‘›βˆˆHol(𝔻) be a function with the bounded sequence {𝑓(𝑛)}𝑛β‰₯0 of Taylor coefficients 𝑓(𝑛)=𝑓(𝑛)(0)/𝑛!(𝑛=0,1,2,…). Then, the following are true:(a)π‘“βˆˆπ»π‘(β‹…) if and only if sup0<π‘Ÿ<11ξ€œ2πœ‹02πœ‹|||𝐷{𝑓(𝑛)𝑒int}ξ‚€βˆšπ‘Ÿξ‚|||𝑝(𝑑)𝑑𝑑(1βˆ’π‘Ÿ)𝑝(𝑑)<+∞;(2.3)(b)if, in addition, 𝑓(𝑛)=𝑂(π‘›βˆ’1) as π‘›β†’βˆž, then π‘“βˆˆπ΅π‘(β‹…) if and only if ξ€œ02πœ‹ξ€œ10|||𝐷{(𝑛+1)𝑓(𝑛+1)𝑒int}ξ‚€βˆšπ‘Ÿξ‚|||𝑝(𝑑)(1+π‘Ÿ)𝑝(𝑑)βˆ’2(1βˆ’π‘Ÿ)2π‘Ÿπ‘‘π‘Ÿπ‘‘π‘‘<+∞.(2.4)

Proof. Indeed, by using the concept of Berezin symbols and formula (2.2), let us rewrite the function βˆ‘π‘“(𝑧)=βˆžπ‘›=0𝑓(𝑛)π‘§π‘›βˆˆHol(𝔻) as follows: 𝑓(𝑧)=π‘“π‘Ÿπ‘’π‘–π‘‘ξ€Έ=βˆžξ“π‘›=0𝑓(𝑛)π‘Ÿπ‘’π‘–π‘‘ξ€Έπ‘›=βˆžξ“π‘›=0𝑓(𝑛)𝑒intπ‘Ÿπ‘›=βˆ‘(1βˆ’π‘Ÿ)βˆžπ‘›=0𝑓(𝑛)𝑒intπ‘Ÿπ‘›=𝐷1βˆ’π‘Ÿ{𝑓(𝑛)𝑒int}ξ‚€βˆšπ‘Ÿξ‚,1βˆ’π‘Ÿ(2.5) thus 𝑓𝐷(𝑧)={𝑓(𝑛)𝑒int}ξ‚€βˆšπ‘Ÿξ‚1βˆ’π‘Ÿ(2.6) for every 𝑧=π‘Ÿπ‘’π‘–π‘‘βˆˆπ”», where, as usual, π‘Ÿ=|𝑧| and 𝑑=arg(𝑧). Now, assertion (a) is immediate from the definition of considering space and formula (2.6).
Let us prove (b). Indeed, it follows from the condition 𝑓(𝑛)=𝑂(π‘›βˆ’1) that the diagonal operator 𝐷{𝑛𝑓(𝑛)} is bounded in 𝐻2 (and hence 𝐷{(𝑛+1)𝑓(𝑛+1)𝑒int} is bounded for every fixed π‘‘βˆˆ[0,2πœ‹)). Then, we have π‘“ξ…žξƒ©(𝑧)=βˆžξ“π‘›=0𝑓(𝑛)𝑧𝑛ξƒͺξ…ž=βˆžξ“π‘›=1𝑛𝑓(𝑛)π‘§π‘›βˆ’1=βˆžξ“π‘›=0(𝑛+1)𝑓(𝑛+1)𝑧𝑛=βˆžξ“π‘›=0(𝑛+1)𝑓(𝑛+1)𝑒intπ‘Ÿπ‘›=βˆ‘(1βˆ’π‘Ÿ)βˆžπ‘›=0(𝑛+1)𝑓(𝑛+1)𝑒intπ‘Ÿπ‘›=𝐷1βˆ’π‘Ÿ{(𝑛+1)𝑓(𝑛+1)𝑒int}ξ‚€βˆšπ‘Ÿξ‚,1βˆ’π‘Ÿ(2.7) thus π‘“ξ…žξ‚π·(𝑧)={(𝑛+1)𝑓(𝑛+1)𝑒int}ξ‚€βˆšπ‘Ÿξ‚1βˆ’π‘Ÿ.(2.8) Therefore, by using formula (2.8), we have that ξ€œπ”»ξ€·1βˆ’|𝑧|2𝑝(𝑑)||π‘“ξ…ž(||𝑧)𝑝(𝑑)𝑑𝐴(𝑧)ξ€·1βˆ’|𝑧|2ξ€Έ2<+∞(2.9) if and only if ξ€œ02πœ‹ξ€œ10|||𝐷{(𝑛+1)𝑓(𝑛+1)𝑒int}ξ‚€βˆšπ‘Ÿξ‚|||𝑝(𝑑)ξ€·1βˆ’π‘Ÿ2𝑝(𝑑)(1βˆ’π‘Ÿ)𝑝(𝑑)π‘Ÿξ€·1βˆ’π‘Ÿ2ξ€Έ2π‘‘π‘Ÿπ‘‘π‘‘<+∞,(2.10) that is, ξ€œ02πœ‹ξ€œ10|||𝐷{(𝑛+1)𝑓(𝑛+1)𝑒int}ξ‚€βˆšπ‘Ÿξ‚|||𝑝(𝑑)(1+π‘Ÿ)𝑝(𝑑)βˆ’2(1βˆ’π‘Ÿ)2π‘Ÿπ‘‘π‘Ÿπ‘‘π‘‘<+∞,(2.11) as desired. The theorem is proved.

We remark that, in case of classical Hardy space, Theorem 2.1 shed some light on the following old problem for the Hardy space functions (see Privalov [12] and Duren [3]): how an 𝐻𝑝 function can be recognized by the behavior of its Taylor coefficients?