Table of Contents Author Guidelines Submit a Manuscript
Journal of Function Spaces and Applications
Volume 2012, Article ID 819321, 15 pages
http://dx.doi.org/10.1155/2012/819321
Research Article

Embedding Operators in Vector-Valued Weighted Besov Spaces and Applications

Department of Electronics Engineering and Communication, Okan University, Akfirat Beldesi, Tuzla, 34959 Istanbul, Turkey

Received 12 July 2011; Accepted 9 January 2012

Academic Editor: Lars-Erik Persson

Copyright © 2012 Veli Shakhmurov. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. V. Besov, V. P. Ilin, and S. M. Nikolskii, Integral Integral Representations of Functions and Imbedding Theorems, Nauka, Moscow, 1975.
  2. S. L. Sobolev, Certain Applications of Functional Analysis to Mathematical Physics, Novosibirsk, Russia, 1962.
  3. H. Triebel, Interpolation Theory Function Spaces Differential Operators, vol. 18, North-Holland, Amsterdam, The Netherlands, 1978.
  4. S. G. Kreĭn, Linear Differential Equations in Banach Space, American Mathematical Society, Providence, RI, USA, 1971.
  5. S. Yakubov and Y. Yakubov, Differential-Operator Equations: Ordinary and Partial Differential Equations, vol. 103 of Monographs and Surveys in Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, Fla, USA, 2000.
  6. H. Amann, โ€œOperator-valued Fourier multipliers, vector-valued Besov spaces, and applications,โ€ Mathematische Nachrichten, vol. 186, pp. 5โ€“56, 1997. View at Publisher ยท View at Google Scholar ยท View at Zentralblatt MATH
  7. H. Amann, Linear and Quasi-Linear Equations, vol. 1, Birkhauser, 1995.
  8. H. Amann, โ€œCompact embeddings of vector-valued Sobolev and Besov spaces,โ€ Glasnik Matematički, vol. 35(55), no. 1, pp. 161โ€“177, 2000. View at Google Scholar ยท View at Zentralblatt MATH
  9. Ju. A. Dubinskiĭ, โ€œWeak convergence for nonlinear elliptic and parabolic equations,โ€ Mathematics of the USSR-Sbornik, vol. 67, pp. 609โ€“642, 1965 (Russian). View at Google Scholar
  10. J.-L. Lions and J. Peetre, โ€œSur une classe d'espaces d'interpolation,โ€ Institut des Hautes Études Scientifiques. Publications Mathématiques, no. 19, pp. 5โ€“68, 1964. View at Google Scholar ยท View at Zentralblatt MATH
  11. P. I. Lizorkin and V. B. Shakhmurov, โ€œEmbedding theorems for vector-valued functions. II,โ€ Izvestiya Vysshikh Uchebnykh Zavedeniĭ. Matematika, no. 2, pp. 47โ€“54, 1989. View at Google Scholar
  12. S.L. Sobolev, โ€œEmbedding theorems for abstract functions,โ€ Doklady Akademii Nauk SSSR, vol. 115, pp. 55โ€“59, 1957. View at Google Scholar
  13. V. B. Shakhmurov, โ€œTheorems about of compact embedding and applications,โ€ Doklady Akademii Nauk SSSR, vol. 241, no. 6, pp. 1285โ€“1288, 1978. View at Google Scholar
  14. V. B. Shakhmurov, โ€œTheorems on the embedding of abstract function spaces and their applications,โ€ Mathematics of the USSR-Sbornik, vol. 134(176), no. 2, pp. 260โ€“273, 1987. View at Google Scholar
  15. V. B. Shakhmurov, โ€œEmbedding theorems and their applications to degenerate equations,โ€ Differential Equations, vol. 24, no. 4, pp. 672โ€“682, 1988. View at Google Scholar
  16. V. B. Shakhmurov, โ€œCoercive boundary value problems for regular degenerate differential-operator equations,โ€ Journal of Mathematical Analysis and Applications, vol. 292, no. 2, pp. 605โ€“620, 2004. View at Publisher ยท View at Google Scholar ยท View at Zentralblatt MATH ยท View at MathSciNet
  17. V. B. Shakhmurov, โ€œEmbedding theorems in B-spaces and applications,โ€ Chinese Annals of Mathematics B, vol. 29, no. 1, pp. 95โ€“112, 2008. View at Publisher ยท View at Google Scholar ยท View at Zentralblatt MATH
  18. V. B. Shakhmurov, โ€œEmbedding operators and maximal regular differential-operator equations in Banach-valued function spaces,โ€ Journal of Inequalities and Applications, vol. 2005, no. 4, pp. 329โ€“345, 2005. View at Publisher ยท View at Google Scholar ยท View at MathSciNet
  19. H.-J. Schmeisser, โ€œVector-valued Sobolev and Besov spaces,โ€ in Seminar Analysis of the Karl-Weierstra\ss-Institute of Mathematics 1985/86, vol. 96 of Teubner-Texte zur Mathematik, pp. 4โ€“44, Teubner, Leipzig, Germany, 1986. View at Google Scholar
  20. V. I. Gorbachuk and M. L. Gorbachuk, Granichnye Zadachi Dlya Differentsialno-Operatornykh Uravnenii, Naukova Dumka, Kiev, Ukraine, 1984.
  21. A. Ya. Shklyar, Complete Second Order Linear Differential Equations in Hilbert Spaces, vol. 92, Birkhäuser, Basle, Switzerland, 1997.
  22. J.-P. Aubin, โ€œAbstract boundary-value operators and their adjoints,โ€ Rendiconti del Seminario Matematico della Università di Padova, vol. 43, pp. 1โ€“33, 1970. View at Google Scholar ยท View at Zentralblatt MATH
  23. A. Ashyralyev, โ€œOn well-posedness of the nonlocal boundary value problems for elliptic equations,โ€ Numerical Functional Analysis and Optimization, vol. 24, no. 1-2, pp. 1โ€“15, 2003. View at Publisher ยท View at Google Scholar ยท View at Zentralblatt MATH ยท View at MathSciNet
  24. G. Dore and S. Yakubov, โ€œSemigroup estimates and noncoercive boundary value problems,โ€ Semigroup Forum, vol. 60, no. 1, pp. 93โ€“121, 2000. View at Publisher ยท View at Google Scholar ยท View at Zentralblatt MATH ยท View at MathSciNet
  25. R. Denk, M. Hieber, and J., Prüss, R-Boundedness, Fourier Multipliers, and Problems of Elliptic and Parabolic Type, vol. 166 of Memoirs of the American Mathematical Society, 2003.
  26. S. Yakubov, โ€œA nonlocal boundary value problem for elliptic differential-operator equations and applications,โ€ Integral Equations and Operator Theory, vol. 35, no. 4, pp. 485โ€“506, 1999. View at Publisher ยท View at Google Scholar ยท View at Zentralblatt MATH ยท View at MathSciNet
  27. P. Kree, โ€œSur les multiplicateurs dans FL aves poids,โ€ Annales de l'Institut Fourier, vol. 16, no. 2, pp. 121โ€“191, 1966. View at Google Scholar
  28. D. S. Kurtz and R. L. Wheeden, โ€œResults on weighted norm inequalities for multipliers,โ€ Transactions of the American Mathematical Society, vol. 255, pp. 343โ€“362, 1979. View at Publisher ยท View at Google Scholar ยท View at Zentralblatt MATH
  29. P. Clément, B. de Pagter, F. A. Sukochev, and H. Witvliet, โ€œSchauder decomposition and multiplier theorems,โ€ Studia Mathematica, vol. 138, no. 2, pp. 135โ€“163, 2000. View at Google Scholar
  30. M. Girardi and L. Weis, โ€œOperator-valued Fourier multiplier theorems on Besov spaces,โ€ Mathematische Nachrichten, vol. 251, pp. 34โ€“51, 2003. View at Publisher ยท View at Google Scholar ยท View at Zentralblatt MATH ยท View at MathSciNet
  31. T. R. McConnell and R. Terry, โ€œOn Fourier multiplier transformations of Banach-valued functions,โ€ Transactions of the American Mathematical Society, vol. 285, no. 2, pp. 739โ€“757, 1984. View at Google Scholar
  32. P. I. Lizorkin, โ€œ(Lp, Lq)-multipliers of Fourier integrals,โ€ Doklady Akademii Nauk SSSR, vol. 152, pp. 808โ€“811, 1963. View at Google Scholar
  33. L. Weis, โ€œOperator-valued Fourier multiplier theorems and maximal Lp-regularity,โ€ Mathematische Annalen, vol. 319, no. 4, pp. 735โ€“758, 2001. View at Publisher ยท View at Google Scholar ยท View at Zentralblatt MATH ยท View at MathSciNet