Abstract

Let ๐ถ(๐‘›)(๐”ปร—๐”ป) be a Banach space of complex-valued functions ๐‘“(๐‘ฅ,๐‘ฆ) that are continuous on ๐”ปร—๐”ป, where ๐”ป={๐‘งโˆˆโ„‚โˆถ|๐‘ง|<1} is the unit disc in the complex plane โ„‚, and have ๐‘›th partial derivatives in ๐”ปร—๐”ป which can be extended to functions continuous on ๐”ปร—๐”ป, and let ๐ถ๐ด(๐‘›)=๐ถ๐ด(๐‘›)(๐”ปร—๐”ป) denote the subspace of functions in ๐ถ(๐‘›)(๐”ปร—๐”ป) which are analytic in ๐”ปร—๐”ป (i.e., ๐ถ๐ด(๐‘›)=๐ถ(๐‘›)(๐”ปร—๐”ป)โˆฉโ„‹๐‘œ๐‘™(๐”ปร—๐”ป)). The double integration operator is defined in ๐ถ๐ด(๐‘›) by the formula โˆซ๐‘Š๐‘“(๐‘ง,๐‘ค)=๐‘ง0โˆซ๐‘ค0๐‘“(๐‘ข,๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข. By using the method of Duhamel product for the functions in two variables, we describe the commutant of the restricted operator ๐‘Šโˆฃ๐ธ๐‘ง๐‘ค, where ๐ธ๐‘ง๐‘ค={๐‘“โˆˆ๐ถ๐ด(๐‘›)โˆถ๐‘“(๐‘ง,๐‘ค)=๐‘“(๐‘ง๐‘ค)} is an invariant subspace of ๐‘Š, and study its properties. We also study invertibility of the elements in ๐ถ๐ด(๐‘›) with respect to the Duhamel product.

1. Introduction and Backgrounds

Let โ„‹๐‘œ๐‘™(๐”ปร—๐”ป) denote the Frรฉchet space of functions ๐‘“(๐‘ง,๐‘ค) that are holomorphic in the bidisc ๐”ปร—๐”ป={(๐‘ง,๐‘ค)โˆˆโ„‚ร—โ„‚โˆถ|๐‘ง|<1and|๐‘ค|<1}. The product we define on this space is ๐œ•(๐‘“โŠ›๐‘”)(๐‘ง,๐‘ค)โˆถ=2๎€œ๐œ•๐‘ง๐œ•๐‘ค๐‘ง0๎€œ๐‘ค0๐‘“(๐‘งโˆ’๐‘ข,๐‘คโˆ’๐‘ฃ)๐‘”(๐‘ข,๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข,(1.1) which obviously defines an integrodifferential operator ๐’Ÿ๐‘“,๐’Ÿ๐‘“๐‘”โˆถ=๐‘“โŠ›๐‘”. This product is a natural extension of the Duhamel product on โ„‹๐‘œ๐‘™(๐”ป) [1]: ๐‘‘(๐‘“โŠ›๐‘”)(๐‘ง)โˆถ=๎€œ๐‘‘๐‘งz0๎€œ๐‘“(๐‘งโˆ’๐‘ก)๐‘”(๐‘ก)๐‘‘๐‘ก=z0๐‘“๎…ž(๐‘งโˆ’๐‘ก)๐‘”(๐‘ก)๐‘‘๐‘ก+๐‘“(0)๐‘”(๐‘ง),(1.2) where the integrals are taken over the segment joining the points 0 and ๐‘ง.

Note that the Duhamel product is widely applied in various questions of analysis, for example, in the theory of differential equations and in solution of boundary value problems of mathematical physics. Wigley [2] showed that, for ๐‘โ‰ฅ1, the Hardy space ๐ป๐‘(๐”ป) (which is the space of all holomorphic functions on the open unit disc ๐”ป for which the norm โ€–๐‘“โ€–๐ป๐‘=sup0<๐‘Ÿ<1๎‚ต1๎€œ2๐œ‹02๐œ‹||๐‘“๎€ท๐‘Ÿ๐‘’๐‘–๐œƒ๎€ธ||๐‘๎‚ถ๐‘‘๐œƒ1/๐‘(1.3) is finite) is a Banach algebra under the Duhamel product โŠ›.

The Hardy space of the polydisc, ๐ป๐‘(๐”ป๐‘›), is defined as those functions analytic on ๐”ป๐‘›โˆถ=๐”ปร—โ‹ฏร—๐”ป for which the following norm is finite: โ€–๐‘“โ€–๐ป๐‘โˆถ=sup๐‘Ÿ1<1โ‹ฏsup๐‘Ÿ๐‘›<1๎‚ต1(2๐œ‹)๐‘›๎€œ02๐œ‹โ‹ฏ๎€œ02๐œ‹||๐‘“๎€ท๐‘Ÿ1๐‘’๐‘–๐œƒ1,โ€ฆ,๐‘Ÿ๐‘›๐‘’๐‘–๐œƒ๐‘›๎€ธ||๐‘๐‘‘๐œƒ1โ‹ฏ๐‘‘๐œƒ๐‘›๎‚ถ1/๐‘.(1.4) If ๐‘โ‰ฅ1, this is a Banach space, and if 0<๐‘Ÿ<1, this is a Frรฉchet space [3]. In [3], Merryfield and Watson proved that for ๐‘โ‰ฅ1๐ป๐‘(๐”ป๐‘›) is a Banach algebra with respect to the product (1.1).

In the present paper we prove that the space ๐ธ๐‘ง๐‘ค can be given a Banach algebra structure under the Duhamel product (1.1); in particular, we describe the maximal ideal space of the Banach algebra (๐ธ๐‘ง๐‘ค,โŠ›), where ๐ธ๐‘ง๐‘ค๎‚†โˆถ=๐‘“โˆˆ๐ถ๐ด(๐‘›)๎‚‡๐œ•โˆถ๐‘“(๐‘ง,๐‘ค)=๐‘“(๐‘ง๐‘ค),(1.5)(๐‘“โŠ›๐‘”)(๐‘ง๐‘ค)=2๎€œ๐œ•๐‘ง๐œ•๐‘ค๐‘ง0๎€œ๐‘ค0๐‘“((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))๐‘”(๐‘ข๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข.(1.6) By using product (1.6) we also describe commutant of the operator ๐‘Š๐‘ง๐‘คโˆถ=๐‘Šโˆฃ๐ธ๐‘ง๐‘ค, that is, the set of bounded linear operators on ๐ธ๐‘ง๐‘ค commuting with ๐‘Š๐‘ง๐‘ค. Moreover, we describe the set of cyclic vectors of the double integration operator ๐‘Š๐‘ง๐‘ค acting on the closed subspace ๐ป๐‘๐‘ง๐‘ค๎€ฝโˆถ=๐‘“(๐‘ง,๐‘ค)โˆˆ๐ป๐‘๎€ท๐”ป2๎€ธ๎€พ.โˆถ๐‘“(๐‘ง,๐‘ค)=๐‘“(๐‘ง๐‘ค)(1.7) We recall that a vector ๐‘ฅโˆˆ๐‘‹ is called cyclic vector for the operator ๐ดโˆˆโ„’(๐‘‹) (Banach algebra of all bounded linear operators on a Banach space ๐‘‹) if ๎€ฝspan๐‘ฅ,๐ด๐‘ฅ,๐ด2๎€พ๐‘ฅ,โ€ฆ=๐‘‹,(1.8) where span{๐‘ฅ,๐ด๐‘ฅ,๐ด2๐‘ฅ,โ€ฆ} denotes the closure of the linear hull of the set {๐‘ฅ,๐ด๐‘ฅ,๐ด2๐‘ฅ,โ€ฆ}.

2. Description of {๐‘Š๐‘ง๐‘ค}๎…ž

For any operator ๐ดโˆˆโ„’(๐‘‹) its commutant {๐ด}๎…ž is defined by {๐ด}๎…žโˆถ={๐ตโˆˆโ„’(๐‘‹)โˆถ๐ต๐ด=๐ด๐ต}.(2.1)

The study of commutant of the concrete operator ๐ดโˆˆโ„’(๐‘‹) is one of the important, but generally, not easy problem of operator theory. For this, it is enough to remember the famous Lomonosovโ€™s theorem on the existence of nontrivial hyperinvariant subspace of compact operator ๐’ฆ on a Banach space ๐‘‹ (recall that a closed subspace ๐ธโŠ‚๐‘‹ is called hyperinvariant subspace for the operator ๐ดโˆˆโ„’(๐‘‹), if it is invariant for any operator ๐ตโˆˆ{๐ด}๎…ž). Note that many papers are devoted to the evident description of commutant (and, more generally, the set of so-called extended eigenvectors [4โ€“6]) for some special operator classes (see, e.g., [7โ€“14]). In this section we describe in terms of the Duhamel operators the commutant of the operator ๐‘Š๐‘ง๐‘ค on the closed subspace ๐ธ๐‘ง๐‘ค of the space ๐ถ๐ด(๐‘›). First, we prove the following lemma, which shows that ๐ธ๐‘ง๐‘ค is a Banach algebra under the Duhamel product โŠ› given by formula (1.6).

Lemma 2.1. (๐ธ๐‘ง๐‘ค,โŠ›) is a Banach algebra.

Proof. Indeed, let ๐‘“,๐‘”โˆˆ๐ธ๐‘ง๐‘ค be two functions. The norm in ๐ธ๐‘ง๐‘ค is defined by โ€–๐‘“โ€–๐‘›๎ƒฏโˆถ=maxmax(๐‘ง,๐‘ค)โˆˆ๐”ป2||||๐œ•|๐›ผ|๐‘“(๐‘ง๐‘ค)๐œ•๐‘ง๐›ผ1๐œ•๐‘ค๐›ผ2||||โˆถ|๐›ผ|=๐›ผ1+๐›ผ2๎ƒฐ.=0,1,โ€ฆ,๐‘›(2.2) Using (1.6), (2.2) and the Leibnitz formula for the partial derivatives of the product ๐‘“โŠ›๐‘”, it can be proved (which is omitted) that (see e.g., the method of the paper [15, 16]) โ€–๐‘“โŠ›๐‘”โ€–๐‘›โ‰ค๐ถ๐‘›โ€–๐‘“โ€–๐‘›โ€–๐‘”โ€–๐‘›(2.3) for some constant ๐ถ๐‘›>0, which proves the lemma.

The main result of this section is the following theorem.

Theorem 2.2. Let ๐‘‡โˆˆโ„’(๐ธ๐‘ง๐‘ค) be an operator. Then ๐‘‡โˆˆ{๐‘Š๐‘ง๐‘ค}๎…ž if and only if there exists a function ๐œ‘โˆˆ๐ธ๐‘ง๐‘ค such that ๐‘‡=๐’Ÿ๐œ‘, where ๐’Ÿ๐œ‘ is the Duhamel operator defined by ๐’Ÿ๐œ‘๐œ•๐‘“(๐‘ง๐‘ค)=(๐œ‘โŠ›๐‘“)(๐‘ง๐‘ค)=2๎€œ๐œ•๐‘ง๐œ•๐‘ค๐‘ง0๎€œ๐‘ค0๐œ‘((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))๐‘“(๐‘ข๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข.(2.4)

Proof. Let ๐‘‡โˆˆ{๐‘Š๐‘ง๐‘ค}๎…ž, that is, ๐‘‡๐‘Š๐‘ง๐‘ค=๐‘Š๐‘ง๐‘ค๐‘‡(2.5) Then we have that ๐‘‡๐‘Š๐‘ง๐‘ค(๐‘ง๐‘ค)๐‘˜=๐‘Š๐‘ง๐‘ค๐‘‡(๐‘ง๐‘ค)๐‘˜,(2.6) for all ๐‘˜=0,1,โ€ฆ, whence by computing ๐‘Š๐‘ง๐‘ค(๐‘ง๐‘ค)๐‘˜ we have ๐‘‡๎‚ต๎€œ๐‘ง0๎€œ๐‘ค0(๐‘ข๐‘ฃ)๐‘˜๎‚ถ๎‚ต๎€œ๐‘‘๐‘ฃ๐‘‘๐‘ข=๐‘‡๐‘ง0๐‘ข๐‘˜๎‚ต๎€œ๐‘ค0๐‘ฃ๐‘˜๎‚ถ๎‚ถ๎€œ๐‘‘๐‘ฃ๐‘‘๐‘ข=๐‘‡๐‘ง0๐‘ข๐‘˜๐‘ค๐‘˜+1๎‚ต๐‘ง๐‘˜+1๐‘‘๐‘ข=๐‘‡๐‘˜+1๐‘ค๐‘˜+1(๐‘˜+1)2๎‚ถ=1(๐‘˜+1)2๐‘‡(๐‘ง๐‘ค)๐‘˜+1,(2.7) or ๐‘‡(๐‘ง๐‘ค)๐‘˜+1=(๐‘˜+1)2๐‘Š๐‘ง๐‘ค๐‘‡(๐‘ง๐‘ค)๐‘˜,(2.8) for all ๐‘˜=0,1,โ€ฆ.
From (2.8) we have by induction that ๐‘‡(๐‘ง๐‘ค)๐‘˜=๐‘Š๐‘˜๐‘ง๐‘ค๐‘‡1๐‘˜๎‘๐‘ =1๐‘ 2(๐‘˜=1,2,โ€ฆ).(2.9) Indeed, for ๐‘˜=1 we have from (2.8) ๐‘‡(๐‘ง๐‘ค)=๐‘Š๐‘ง๐‘ค๐‘‡1, as desired.
Assume for ๐‘˜=๐‘› that ๐‘‡(๐‘ง๐‘ค)๐‘›=๐‘Š๐‘›๐‘ง๐‘ค๐‘‡1๐‘›๎‘๐‘ =1๐‘ 2.(2.10) For ๐‘˜=๐‘›+1 we have from (2.8) that ๐‘‡(๐‘ง๐‘ค)๐‘›+1=(๐‘›+1)2๐‘Š๐‘ง๐‘ค๐‘‡(๐‘ง๐‘ค)๐‘›.(2.11) Now, by considering (2.10) from the latter equality we have ๐‘‡(๐‘ง๐‘ค)๐‘›+1=(๐‘›+1)2๐‘Š๐‘ง๐‘ค๎ƒฉ๐‘Š๐‘›๐‘ง๐‘ค๐‘‡1๐‘›๎‘๐‘ =1๐‘ 2๎ƒช=๐‘Š๐‘›+1๐‘ง๐‘ค๐‘‡1(๐‘›+1)2๐‘›๎‘๐‘ =1๐‘ 2=๐‘Š๐‘›+1๐‘ง๐‘ค๐‘‡1๐‘›+1๎‘๐‘ =1๐‘ 2,(2.12) which proves (2.9).
Now, let us show that ๎€ท๐‘Š๐‘˜๐‘ง๐‘ค๐‘“๎€ธ๎€œ(๐‘ง๐‘ค)=๐‘ง0๎€œ๐‘ค0[](๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ)๐‘˜โˆ’1[](๐‘˜โˆ’1)!2๐‘“(๐‘ข๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข.(2.13) For this purpose, first show that ๎€ท๐‘Š๐‘˜๐‘ง๐‘ค๐‘“๎€ธ(๐‘ง๐‘ค)=(๐‘ง๐‘ค)๐‘˜[]๐‘˜!2โŠ›๐‘“(๐‘ง๐‘ค),(2.14) for all ๐‘˜โ‰ฅ0. Indeed, it follows directly from (1.6) that 1 is the unit with respect to the Duhamel product โŠ› in ๐ธ๐‘ง๐‘ค, and ๐‘Š๐‘ง๐‘ค๐‘“=๐‘ง๐‘คโŠ›๐‘“(๐‘ง๐‘ค) for every ๐‘“โˆˆ๐ธ๐‘ง๐‘ค. From this by induction we have equality (2.14) (we omit details).
Then we have ๎€ท๐‘Š๐‘˜๐‘ง๐‘ค๐‘“๎€ธ(๐‘ง๐‘ค)=(๐‘ง๐‘ค)๐‘˜[]๐‘˜!2๐œ•โŠ›๐‘“(๐‘ง๐‘ค)=2๎€œ๐œ•๐‘ง๐œ•๐‘ค๐‘ง0๎€œ๐‘ค0[](๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ)๐‘˜[](๐‘˜!)2=1๐‘“(๐‘ข๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข(๐‘˜!)2๎€œ๐‘ง0๎€œ๐‘ค0๐‘˜2[](๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ)๐‘˜โˆ’1๐‘“=๐‘˜(๐‘ข๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข2๐‘˜2[](๐‘˜โˆ’1)!2๎€œ๐‘ง0๎€œ๐‘ค0[](๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ)๐‘˜โˆ’1=๎€œ๐‘“(๐‘ข๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข๐‘ง0๎€œ๐‘ค0[](๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ)๐‘˜โˆ’1[](๐‘˜โˆ’1)!2๐‘“(๐‘ข๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข,(2.15) which proves (2.13).
Now by combining (2.9) and (2.13) we have ๐‘‡(๐‘ง๐‘ค)๐‘˜=๐‘˜๎‘๐‘ =1๐‘ 2๎€œ๐‘ง0๎€œ๐‘ค0[](๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ)๐‘˜โˆ’1[](๐‘˜โˆ’1)!2๐‘‡1๐‘‘๐‘ฃ๐‘‘๐‘ข,(2.16) for all ๐‘˜โ‰ฅ0, which means that ๐‘‡(๐‘ง๐‘ค)๐‘˜=(๐‘ง๐‘ค)๐‘˜โŠ›๐‘‡1(๐‘˜โ‰ฅ0),(2.17) and hence ๐‘‡๐‘(๐‘ง๐‘ค)=๐‘(๐‘ง๐‘ค)โŠ›๐‘‡1,(2.18) for all polynomials ๐‘. Thus, by Lemma 2.1 and Weierstrass approximation theorem, we deduce that ๐œ•(๐‘‡๐‘“)(๐‘ง๐‘ค)=๐‘‡1โŠ›๐‘“(๐‘ง๐‘ค)=2๎€œ๐œ•๐‘ง๐œ•๐‘ค๐‘ง0๎€œ๐‘ค0=๐œ•๐‘“((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))(๐‘‡1)(๐‘ข๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข2๎€œ๐œ•๐‘ง๐œ•๐‘ค๐‘ง0๎€œ๐‘ค0=๎€œ(๐‘‡1)((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))๐‘“(๐‘ข๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข๐‘ง0๎€œ๐‘ค0๐œ•2=๎€œ๐œ•๐‘ง๐œ•๐‘ค(๐‘‡1)((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))๐‘“(๐‘ข๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข๐‘ง0๎€œ๐‘ค0๎€บ(๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ)(๐‘‡1)๐‘ง๐‘ค((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))+(๐‘‡1)๐‘ค๎€ป=๎€œ((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))๐‘“(๐‘ข๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข+(๐‘‡1)(0)๐‘“(๐‘ง๐‘ค)๐‘ง0๎€œ๐‘ค0๎€บ๐œ‘๐‘ค((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))+(๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ)๐œ‘๐‘ง๐‘ค๎€ป((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))๐‘“(๐‘ข๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข+๐œ‘0๐‘“(๐‘ง๐‘ค),(2.19) where ๐œ‘โˆถ=๐‘‡1โˆˆ๐ธ๐‘ง๐‘ค.(2.20) Thus, (๐‘‡๐‘“)(๐‘ง๐‘ค)=๐œ‘(๐‘ง๐‘ค)โŠ›๐‘“(๐‘ง๐‘ค)=๐’Ÿ๐œ‘๐‘“(๐‘ง๐‘ค)(2.21) for all ๐‘“โˆˆ๐ธ๐‘ง๐‘ค and some ๐œ‘โˆˆ๐ธ๐‘ง๐‘ค. Conversely, if ๐œ‘โˆˆ๐ธ๐‘ง๐‘ค, then ๐’Ÿ๐œ‘ commutes with ๐‘Š๐‘ง๐‘ค. Since by Lemma 2.1๐ธ๐‘ง๐‘ค is a Banach algebra with respect to the Duhamel product โŠ›, ๐’Ÿ๐œ‘ is bounded operator on ๐ธ๐‘ง๐‘ค. The theorem is proved.

Corollary 2.3. For a function ๐œ‘ in ๐ธ๐‘ง๐‘ค there exists a unique commutant ๐‘‡ of the operator ๐‘Š๐‘ง๐‘ค such that ๐‘‡1=๐œ‘(๐‘ง๐‘ค).

Corollary 2.4. One has {๐‘Š๐‘ง๐‘ค}๎…ž๎…ž={๐‘Š๐‘ง๐‘ค}๎…ž, where {๐‘Š๐‘ง๐‘ค}๎…ž๎…ž stands for the bicommutant of the operator ๐‘Š๐‘ง๐‘ค.

Proof. It suffices to prove that ๐‘‡1๐‘‡2=๐‘‡2๐‘‡1 for every ๐‘‡1, ๐‘‡2 in {๐‘Š๐‘ง๐‘ค}๎…ž. Indeed, by Theorem 2.2, there exist ๐œ‘,๐œ“โˆˆ๐ธ๐‘ง๐‘ค such that ๎€ท๐‘‡1๐‘“๎€ธ๎€œ(๐‘ง๐‘ค)=๐œ‘(0)๐‘“(๐‘ง๐‘ค)+๐‘ง0๎€œ๐‘ค0๎€บ๐œ‘๐‘ค+((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))(๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ)๐œ‘๐‘ง๐‘ค๎€ป๐‘“=๎€ท((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))(๐‘ข๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข๐œ‘(0)๐ผ+๐’ฆฮฆ๎€ธ๎€ท๐‘‡๐‘“(๐‘ง๐‘ค),(2.22)2๐‘“๎€ธ๎€œ(๐‘ง๐‘ค)=๐œ“(0)๐‘“(๐‘ง๐‘ค)+๐‘ง0๎€œ๐‘ค0๎€บ๐œ“๐‘ค+((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))(๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ)๐œ“๐‘ง๐‘ค๎€ป๐‘“=๎€ท((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))(๐‘ข๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข๐œ“(0)๐ผ+๐’ฆฮจ๎€ธ๐‘“(๐‘ง๐‘ค)(2.23) for all ๐‘“โˆˆ๐ธ๐‘ง๐‘ค, where ๐œ•ฮฆ(๐‘ง๐‘ค)โˆถ=2=๐œ•๐œ•๐‘ง๐œ•๐‘ค๐œ‘(๐‘ง๐‘ค),ฮจ(๐‘ง๐‘ค)โˆถ2๐’ฆ๐œ•๐‘ง๐œ•๐‘ค๐œ“(๐‘ง๐‘ค),ฮฆ๎€œ๐‘“(๐‘ง๐‘ค)=(ฮฆโˆ—๐‘“)(๐‘ง๐‘ค)โˆถ=๐‘ง0๎€œ๐‘ค0๐œ•2=๎€œ๐œ•๐‘ง๐œ•๐‘ค๐œ‘((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))๐‘“(๐‘ข๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข๐‘ง0๎€œ๐‘ค0๎€บ๐œ‘๐‘ค((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))+(๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ)๐œ‘๐‘ง๐‘ค๎€ป๐’ฆ((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))๐‘“(๐‘ข๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข,ฮจ๐‘“๎€œ(๐‘ง๐‘ค)=(ฮจโˆ—๐‘“)(๐‘ง๐‘ค)โˆถ=๐‘ง0๎€œ๐‘ค0๐œ•2๐œ“=๎€œ๐œ•๐‘ง๐œ•๐‘ค((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))๐‘“(๐‘ข๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข๐‘ง0๎€œ๐‘ค0๎€บ๐œ“๐‘ค((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))+(๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ)๐œ“๐‘ง๐‘ค๎€ป๐‘“((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))(๐‘ข๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข.(2.24) Since the usual convolution operators ๐’ฆฮฆ and ๐’ฆฮจ are commuting operators, we have ๐‘‡1๐‘‡2=๎€ท๐œ‘(0)๐ผ+๐’ฆฮฆ๎€ธ๎€ท๐œ“(0)๐ผ+๐’ฆฮจ๎€ธ=๎€ท๐œ“(0)๐ผ+๐’ฆฮจ๎€ธ๎€ท๐œ‘(0)๐ผ+๐’ฆฮฆ๎€ธ=๐‘‡2๐‘‡1,(2.25) which proves the corollary.

Theorem 2.5. An operator ๐‘‡โˆˆโ„’(๐ธ๐‘ง๐‘ค) will be an isomorphism of the space ๐ธ๐‘ง๐‘ค into itself and commutes with ๐‘Š๐‘ง๐‘ค if and only if it can be written in the form ๎€œ(๐‘‡๐‘“)(๐‘ง๐‘ค)=๐œ‘(0)๐‘“(๐‘ง๐‘ค)+๐‘ง0๎€œ๐‘ค0๎€บ๐œ‘๐‘ค+((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))(๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ)๐œ‘๐‘ง๐‘ค๎€ป๐‘“((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))(๐‘ข๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข,(2.26) and๐œ‘(0)=(๐‘‡1)โˆฃ๐‘ง๐‘ค=0โ‰ 0.

Proof. If ๐‘‡โˆˆโ„’(๐ธ๐‘ง๐‘ค) is an isomorphism of the space ๐ธ๐‘ง๐‘ค into itself and commutes with ๐‘Š๐‘ง๐‘ค, then by Theorem 2.2 we have for ๐‘‡ representation (2.26) with ๐‘‡๐‘Š๐‘ง๐‘ค=๐‘Š๐‘ง๐‘ค๐‘‡. Clearly, it follows from this equality and (2.26) that ๐œ‘(0)=(๐‘‡1)โˆฃ๐‘ง๐‘ค=0โ‰ 0.
Conversely, suppose that ๐‘‡ has the form (2.26) with ๐œ‘(0)=(๐‘‡1)โˆฃ๐‘ง๐‘ค=0โ‰ 0, and prove then that ๐‘‡โˆˆ{๐‘Š๐‘ง๐‘ค}๎…ž and ๐‘‡ is an isomorphism on ๐ธ๐‘ง๐‘ค. Indeed, the inclusion ๐‘‡โˆˆ{๐‘Š๐‘ง๐‘ค}๎…ž follows directly from Theorem 2.2. On the other hand, it is easy to see from the representation (2.26) that ๐‘‡=๐’Ÿ๐œ‘=๐œ‘(0)๐ผ+๐’ฆฮฆ,(2.27) where ๐’ฆฮฆ, ๐’ฆฮฆ๎€œ๐‘“=๐‘ง0๎€œ๐‘ค0๎€บ๐œ‘๐‘ค((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))+(๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ)๐œ‘๐‘ง๐‘ค๎€ป((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))๐‘“(๐‘ข๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข,(2.28) is the usual convolution operator on ๐ธ๐‘ง๐‘ค. It is not difficult to see that ๐’ฆฮฆ is a compact operator on ๐ธ๐‘ง๐‘ค.
Let us show that ker๐’Ÿ๐œ‘={0}. Indeed, let ๐’Ÿ๐œ‘๐‘“=0, where ๐‘“โˆˆ๐ธ๐‘ง๐‘ค. Then, (๐œ‘(0)๐ผ+๐’ฆฮฆ)๐‘“=0, that is, ๐œ•2๎€œ๐œ•๐‘ง๐œ•๐‘ค๐‘ง0๎€œ๐‘ค0๐œ‘((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))๐‘“(๐‘ข๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข=0.(2.29) By standard calculation, we obtain from (2.29) that ๎€œ๐‘ง0๎€œ๐‘ค0๐œ‘((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))๐‘“(๐‘ข๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข=๐‘1๐‘ง+๐‘2,(2.30) where ๐‘1, ๐‘2 are constants. Since ๎‚ต๎€œ0=๐‘ง0๎€œ๐‘ค0๐œ‘๎‚ถ||||((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))๐‘“(๐‘ข๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข๐‘ง=0=๎€ท๐‘1๐‘ง+๐‘2๎€ธ||๐‘ง=0=๐‘2,(2.31) we have that ๐‘2=0. On the other hand, since ๎‚ต๎€œ0=๐‘ง0๎€œ๐‘ค0๐œ‘๎‚ถ||||((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))๐‘“(๐‘ข๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข๐‘ค=0=๐‘1๐‘ง,(2.32) for all ๐‘งโˆˆ๐”ป, we obtain that ๐‘1=0. Thus, ๎€œ๐‘ง0๎€œ๐‘ค0๐œ‘((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))๐‘“(๐‘ข๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข=0,(2.33) for all ๐‘งโˆˆ๐”ป and ๐‘คโˆˆ๐”ป. Now, by considering that ๐œ‘(0)โ‰ 0 and ๐œ‘ is a continuous function on ๐”ปร—๐”ป, by the Titchmarsh Convolution Theorem [17] for functions of several variables we deduce from (2.33) that ๐‘“(๐‘ง๐‘ค)=0 for all ๐‘ง,๐‘คโˆˆ๐”ป, that is, ker๐‘‡={0}. Since ๐’ฆฮฆ is compact, it follows from Fredholm alternative that ๐‘‡ is invertible in ๐ธ๐‘ง๐‘ค, that is, ๐‘‡ is an isomorphism. The theorem is proved.

From Theorem 2.5 and Corollary 2.3 we obtain the following.

Corollary 2.6. For any function ๐œ‘ belonging to ๐ธ๐‘ง๐‘ค and satisfying ๐œ‘(0)โ‰ 0, there exists a unique isomorphism ๐‘‡ of the space ๐ธ๐‘ง๐‘ค such that ๐‘‡ commutes with ๐‘Š๐‘ง๐‘ค and ๐‘‡1=๐œ‘(๐‘ง๐‘ค).

Corollary 2.7. If ๐œ‘โˆˆ๐ธ๐‘ง๐‘ค and ๐œ‘(0)โ‰ 0, then the integrodifferential equation ๎€œ๐œ‘(0)๐‘ฅ(๐‘ง๐‘ค)+๐‘ง0๎€œ๐‘ค0๎€บ๐œ‘๐‘ค((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))+(๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ)๐œ‘๐‘ง๐‘ค๎€ป((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))๐‘ฅ(๐‘ข๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข=๐‘ฆ(๐‘ง๐‘ค)(2.34) has a unique solution for any right-hand side ๐‘ฆโˆˆ๐ธ๐‘ง๐‘ค.

Corollary 2.8. The unique maximal ideal of the Banach algebra (๐ธ๐‘ง๐‘ค,โŠ›) is {๐‘“โˆˆ๐ธ๐‘ง๐‘คโˆถ๐‘“(0)=0}; that is, the maximal ideal space of (๐ธ๐‘ง๐‘ค,โŠ›) consists of one homomorphizm, namely evaluation at the origin โ„Ž(๐‘“)=๐‘“(0).

3. Cyclic Vectors of ๐‘Š๐‘ง๐‘ค

Let us consider the restricted operator ๐‘Š๐‘ง๐‘ค=๐‘Šโˆฃ๐ป๐‘๐‘ง๐‘ค. In this section we will describe the set of all cyclic vectors of this operator. The main result of this section is the following.

Theorem 3.1. Let ๐‘“โˆˆ๐ป๐‘๐‘ง๐‘ค. Then ๎€ฝ๐‘Šspan๐‘›๐‘ง๐‘ค๎€พ๐‘“โˆถ๐‘›=0,1,2,โ€ฆ=๐ป๐‘๐‘ง๐‘ค,(3.1) if and only if ๐‘“โˆฃ๐‘ง๐‘ค=0โ‰ 0.

Proof. It is easy to verify that ๐‘Š๐‘˜๐‘ง๐‘ค๐‘”(๐‘ง๐‘ค)=(๐‘ง๐‘ค)๐‘˜(๐‘˜!)2โŠ›๐‘”(๐‘ง๐‘ค)(๐‘˜โ‰ฅ0),(3.2) for all ๐‘”โˆˆ๐ป๐‘๐‘ง๐‘ค. Let us define the integrodifferential operator (or, briefly, the Duhamel operator) ๐’Ÿ๐‘“ defined by (๐’Ÿ๐‘“๐‘”)(๐‘ง๐‘ค)=(๐‘“โŠ›๐‘”)(๐‘ง๐‘ค),๐‘”โˆˆ๐ป๐‘๐‘ง๐‘ค. By the known result of Merryfield and Watson (see [3, Corollary 2.6]), ๐ป๐‘(๐”ป2),๐‘โ‰ฅ1, is the Banach algebra with respect to the Duhamel product โŠ› defined by (1.1). Therefore, it is easy to see that (๐ป๐‘๐‘ง๐‘ค,โŠ›) is also Banach algebra, and hence, ๐’Ÿ๐‘“ is a bounded operator on ๐ป๐‘๐‘ง๐‘ค. Then it follows from (3.2) that ๎€ฝ๐‘Šspan๐‘˜๐‘ง๐‘ค๎€พ๎‚ป๐‘“โˆถ๐‘˜โ‰ฅ0=span(๐‘ง๐‘ค)๐‘˜(๐‘˜!)2๎‚ผ๎‚ป๐’ŸโŠ›๐‘“(๐‘ง๐‘ค)โˆถ๐‘˜โ‰ฅ0=span๐‘“๎‚ต(๐‘ง๐‘ค)๐‘˜(๐‘˜!)2๎‚ถ๎‚ผโˆถ๐‘˜โ‰ฅ0=clos๐’Ÿ๐‘“๎€ฝspan(๐‘ง๐‘ค)๐‘˜๎€พโˆถ๐‘˜โ‰ฅ0=clos๐’Ÿ๐‘“๐ป๐‘๐‘ง๐‘ค.(3.3) Thus, ๐‘“ is a cyclic vector for ๐‘Š๐‘ง๐‘ค if and only if ๐’Ÿ๐‘“ has a dense range. Let us show that the latter is equivalent to the condition ๐‘“(0)โ‰ 0. Clearly, if ๐’Ÿ๐‘“ has a dense range then ๐‘“(0)โ‰ 0. Conversely, let ๐‘“(0)โ‰ 0. We will prove actually more strong result that ๐’Ÿ๐‘“ is invertible in ๐ป๐‘๐‘ง๐‘ค. Really, let us rewrite the operator ๐’Ÿ๐‘“ in the form ๐’Ÿ๐‘“=๐‘“(0)๐ผ+๐’ฆ๐œ•2๐‘“/๐œ•๐‘ง๐œ•๐‘ค, where ๐ผ is the identity operator in ๐ป๐‘๐‘ง๐‘ค and ๐’ฆ๐œ•2๐‘“/๐œ•๐‘ง๐œ•๐‘ค๎€œ๐‘”(๐‘ง๐‘ค)=๐‘ง0๎€œ๐‘ค0๎€บ๐‘“๐‘ง+((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))(๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ)๐‘“๐‘ง๐‘ค๎€ป๐‘”((๐‘งโˆ’๐‘ข)(๐‘คโˆ’๐‘ฃ))(๐‘ข๐‘ฃ)๐‘‘๐‘ฃ๐‘‘๐‘ข.(3.4) Since ๐œ•2๐‘“/๐œ•๐‘ง๐œ•๐‘ค is a continuous function, it is easy to see that ๐’ฆ๐œ•2๐‘“/๐œ•๐‘ง๐œ•๐‘ค is a compact operator (even Volterra operator) on ๐ป๐‘๐‘ง๐‘ค. Now, as in the proof of Theorem 2.5, it follows from Titchmarsh Convolution Theorem that ker๐’Ÿ๐‘“={0}. Then, again by the Fredholm theorem we assert that ๐’Ÿ๐‘“ is invertible, which completes the proof.

In conclusion, note that the study of the double integration operator ๐‘Š in the Lebesgue space ๐ฟ2([0,1]ร—[0,1]) was originated by Donoghue, Jr., in [18]. He showed that the operator ๐‘Š is not unicellular. Atzmon and Manos [19] proved that the multiplicity of spectrum ๐œ‡(๐‘Š) of the operator ๐‘Š is equal to +โˆž (we recall that the multiplicity of spectrum of the Banach space operator ๐ดโˆˆโ„’(๐‘‹) is defined by ๐œ‡(๐ด)โˆถ=min{card๐ธโˆถspan{๐ด๐‘›๐ธโˆถ๐‘›โ‰ฅ0}=๐‘‹}). Some related results for ๐‘Š are also contained in the paper [15] by Karaev.