Table of Contents
Journal of Fuels
Volume 2014 (2014), Article ID 286392, 5 pages
http://dx.doi.org/10.1155/2014/286392
Research Article

Effect of Coexistent Hydrogen on the Selective Production of Ethane by Dehydrogenative Methane Coupling through Dielectric-Barrier Discharge under Ordinary Pressure at an Ambient Temperature

1Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, Narashino 2-17-1, Chiba, Japan
2Hitachi Automotive Systems, Ltd., Development Division Drive Control Systems Division 6-3, 1 Chome, Fujimi, Kanagawa, Japan

Received 14 June 2013; Accepted 25 September 2013; Published 1 January 2014

Academic Editors: S. Kambara, D. H. Lee, and O. Senneca

Copyright © 2014 Katsuya Konno et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Onoe, A. Fujie, T. Yamaguchi, and Y. Hatano, “Selective synthesis of acetylene from methane by microwave plasma reactions,” Fuel, vol. 76, no. 3, pp. 281–282, 1997. View at Google Scholar · View at Scopus
  2. T. Yamaguchi, A. Kadota, and C. Saito, “Dehydrogenative coupling of methane by use of thermal diffusion column,” Chemisty Letters, vol. 17, pp. 681–682, 1988. View at Google Scholar
  3. T. Yamaguchi and C. Saito, “Selective synthesis of ethylene by dehydrogenative coupling of methane by use of thermal diffusion column,” Bulletin of the Chemical Society of Japan, vol. 61, pp. 2649–2650, 1988. View at Google Scholar
  4. T. Yamaguchi, C. Xianghao, and G. Zhiming, “Dehydrogenative coupling in thermal diffusion reactor with the function of hydrogen separation,” Journal of the Japan Petroleum Institute, vol. 35, pp. 292–295, 1992. View at Google Scholar
  5. K. Suzuki, R. Takahashi, K. Onoe, and T. Yamaguchi, “Dehydrogenative methane homologation to C2 hydrocarbon and aliphatic oil by a thermal diffusion column reactor with platinum-loaded pyrogen,” Energy and Fuels, vol. 13, no. 2, pp. 482–484, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Suzuki, V. J. Wargadalam, K. Onoe, and T. Yamaguchi, “CO2 reforming of methane by thermal diffusion column reactor with Ni/carbon-coated alumina tube pyrogen,” Energy and Fuels, vol. 15, no. 3, pp. 571–574, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Gao, M. Kobayashi, H. Wang, K. Onoe, and T. Yamaguchi, “Methane conversion in thermal diffusion column reactor with carbon rod as pyrogen,” Fuel Processing Technology, vol. 88, no. 10, pp. 996–1001, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Kawakami, T. Kanaguchi, H. Tagami, and T. Yamaguchi, “The effect of coexistent gases on the thermal reaction of toluene or methane in a Clusius-Dickel type diffusion column,” Bulletin of the Chemical Society of Japan, vol. 65, pp. 3434–3438, 1992. View at Google Scholar
  9. S. Kado, Y. Sekine, T. Nozaki, and K. Okazaki, “Diagnosis of atmospheric pressure low temperature plasma and application to high efficient methane conversion,” Catalysis Today, vol. 89, no. 1-2, pp. 47–55, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. X.-S. Li, A.-M. Zhu, K.-J. Wang, Y. Xu, and Z.-M. Song, “Methane conversion to C2 hydrocarbons and hydrogen in atmospheric non-thermal plasmas generated by different electric discharge techniques,” Catalysis Today, vol. 98, no. 4, pp. 617–624, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Indarto, N. Coowanitwong, J.-W. Choi, H. Lee, and H. K. Song, “Kinetic modeling of plasma methane conversion in a dielectric barrier discharge,” Fuel Processing Technology, vol. 89, no. 2, pp. 214–219, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S.-S. Kim, H. Lee, J.-W. Choi, B.-K. Na, and H. K. Song, “Methane conversion to higher hydrocarbons in a dielectric-barrier discharge reactor with Pt/γ-Al2O3 catalyst,” Catalysis Communications, vol. 8, no. 9, pp. 1438–1442, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. Q. Wang, B.-H. Yan, Y. Jin, and Y. Cheng, “Dry reforming of methane in a dielectric barrier discharge reactor with Ni/Al2O3 Catalyst: interaction of catalyst and plasma,” Energy and Fuels, vol. 23, no. 8, pp. 4196–4201, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Górska, K. Krawczyk, S. Jodzis, and K. Schmidt-Szałowski, “Non-oxidative methane coupling using Cu/ZnO/Al2O3 catalyst in DBD,” Fuel, vol. 90, no. 5, pp. 1946–1952, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Indarto, J.-W. Choi, H. Lee, and H. K. Song, “Methane conversion using dielectric barrier discharge: comparison with thermal process and catalyst effects,” Journal of Natural Gas Chemistry, vol. 15, no. 2, pp. 87–92, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Konno, M. Kobayashi, K. Onoe, and T. Yamaguchi, “Conversion of methane by dielectric-barrier discharge plasma method—comparison with microwave plasma method,” Journal of the Japan Petroleum Institute, vol. 53, no. 3, pp. 144–151, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Kado, K. Urasaki, Y. Sekine, K. Fujimoto, T. Nozaki, and K. Okazaki, “Reaction mechanism of methane activation using non-equilibrium pulsed discharge at room temperature,” Fuel, vol. 82, no. 18, pp. 2291–2297, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Konno, K. Onoe, and T. Yamaguchi, “The effect of changes in catalyst temperature produced by direct plasma heating on the preparation of carbon nanotube,” Tanso, no. 241, pp. 2–5, 2010. View at Google Scholar
  19. K. Konno, K. Onoe, Y. Takiguchi, and T. Yamaguchi, “Direct preparation of hydrogen and carbon nanotubes by microwave plasma decomposition of methane over Fe/Si activated by biased hydrogen plasma,” Green and Sustainable Chemistry, no. 3, pp. 19–25, 2013. View at Google Scholar
  20. A. Indarto, J.-W. Choi, H. Lee, and H. K. Song, “Effect of additive gases on methane conversion using gliding arc discharge,” Energy, vol. 31, no. 14, pp. 2650–2659, 2006. View at Publisher · View at Google Scholar · View at Scopus