Table of Contents
Journal of Geological Research
Volume 2012, Article ID 526016, 16 pages
http://dx.doi.org/10.1155/2012/526016
Research Article

Applications of Vitrinite Anisotropy in the Tectonics: A Case Study of Huaibei Coalfield, Southern North China

1MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, CAGS, Beijing 100037, China
2Key Lab of Computational Geodynamics of Chinese Academy of Sciences and College of Earth Science, Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
3Key Laboratory of Coal Resources, China University of Mining and Technology, Beijing 100083, China
4Key laboratory of Basin Structure and Petroleum Accumulation, CNPC and PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China

Received 28 February 2012; Accepted 6 April 2012

Academic Editor: Hongyuan Zhang

Copyright © 2012 Yudong Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Stone and A. Cook, “The influence of some tectonic structures upon vitrinite reflectance,” The Journal of Geology, vol. 87, pp. 497–508, 1979. View at Google Scholar
  2. E. Stach, M.-T. Mackowsky, M. Techmuller, G. H. Taylor, D. Chandra, and R. Techmuller, Stach's Textbook of Coal Petrology, 3rd edition, 1982.
  3. J. V. Ross, R. M. Bustin, and J. N. Rouzaud, “Graphitization of high rank coals—the role of shear strain: experimental considerations,” Organic Geochemistry, vol. 17, no. 5, pp. 585–596, 1991. View at Google Scholar · View at Scopus
  4. R. M. Bustin, J. V. Ross, and J. N. Rouzaud, “Mechanisms of graphite formation from kerogen: experimental evidence,” International Journal of Coal Geology, vol. 28, no. 1, pp. 1–36, 1995. View at Google Scholar · View at Scopus
  5. J. Komorek and R. Morga, “Relationship between the maximum and the random reflectance of vitrinite for coal from the Upper Silesian Coal Basin (Poland),” Fuel, vol. 81, no. 7, pp. 969–971, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Pusz, S. Duber, and B. K. Kwiecińska, “The study of textural and structural transformations of carbonized anthracites,” Fuel Processing Technology, vol. 77-78, pp. 173–180, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Komorek and R. Morga, “Vitrinite reflectance property change during heating under inert conditions,” International Journal of Coal Geology, vol. 54, no. 1-2, pp. 125–136, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Pusz, B. K. Kwiecińska, and S. Duber, “Textural transformation of thermally treated anthracites,” International Journal of Coal Geology, vol. 54, no. 1-2, pp. 115–123, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Krzesińska, S. Pusz, and A. Koszorek, “Elastic and optical anisotropy of the single-coal monolithic high-temperature (HT) carbonization products obtained on a laboratory scale,” Energy and Fuels, vol. 19, no. 5, pp. 1962–1970, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Y. Cao, X. M. Li, and S. R. Zhang, “Influence of tectonic stress on coalification: stress degradation mechanism and stress polycondensation mechanism,” Science in China, Series D, vol. 50, no. 1, pp. 43–54, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. J. P. Jiang, G. Y. Gao, and J. W. Kang, “Tests on vitrinite reflectance of coal and analysis of tectonic stress field,” Chinese Journal of Geophysics (Acta Geophysica Sinica), vol. 50, no. 1, pp. 138–145, 2007. View at Google Scholar · View at Scopus
  12. J. Komorek and R. Morga, “Evolution of optical properties of vitrinite, sporinite and semifusinite in response to heating under inert conditions,” International Journal of Coal Geology, vol. 71, no. 4, pp. 389–404, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Suárez-Ruiz and A. B. García, “Optical parameters as a tool to study the microstructural evolution of carbonized anthracites during high-temperature treatment,” Energy and Fuels, vol. 21, no. 5, pp. 2935–2941, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. R. Levine and A. Davis, “Optical anisotropy of coals as an indicator of tectonic deformation, Broad Top Coal Field, Pennsylvania ( USA),” Geological Society of America Bulletin, vol. 95, no. 1, pp. 100–108, 1984. View at Google Scholar · View at Scopus
  15. J. R. Levine and A. Davis, “Reflectance anisotropy of Upper Carboniferous coals in the Appalachian foreland basin, Pennsylvania, U.S.A,” International Journal of Coal Geology, vol. 13, no. 1-4, pp. 341–373, 1989. View at Google Scholar · View at Scopus
  16. B. Jiang and Y. Qin, “Experimental research on deformation of optical fabric of coal vitrinite reflectance experimental research on deformation of optical fabric of coal vitrinite reflectance,” Coal Geology & Exploration, vol. 25, pp. 11–15, 1997 (Chinese). View at Google Scholar
  17. J. C. Hower and A. Davis, “Vitrinite reflectance anisotropy as a tectonic fabric element,” Geology, vol. 9, pp. 165–168, 1981. View at Google Scholar
  18. D. Y. Cao, “The vitrinite reflectance anisotropy in the nappe structure in the Huaibei coalfield, Anhni province,” Geology Review, vol. 36, pp. 333–340, 1990 (Chinese). View at Google Scholar
  19. W. Langenberg and W. Kalkreuth, “Reflectance anisotropy and syn-deformational coalification of the Jewel seam in the Cadomin area, Alberta, Canada,” International Journal of Coal Geology, vol. 19, no. 1-4, pp. 303–317, 1991. View at Google Scholar · View at Scopus
  20. B. Jiang, F. Y. Xu, Y. Liu, and F. L. Jin, “Vitrinite optical fabric and stress-strain analysis of northern margin of Chaidamu Basin,” Journal of China University of Mining & Technology, vol. 31, pp. 561–564, 2002. View at Google Scholar
  21. J. Jones and S. Creaney, “Optical character of thermally metamorphosed coals of northern England,” Journal of Microscopy, vol. 109, pp. 105–118, 1977. View at Google Scholar
  22. G. K. Khorasani, D. G. Murchison, and A. C. Raymond, “Molecular disordering in natural cokes approaching dyke and sill contacts,” Fuel, vol. 69, no. 8, pp. 1037–1046, 1990. View at Google Scholar · View at Scopus
  23. W. E. Kilby, “Recognition of vitrinite with non-uniaxial negative reflectance characteristics,” International Journal of Coal Geology, vol. 9, no. 3, pp. 267–285, 1988. View at Google Scholar · View at Scopus
  24. W. E. Kilby, “Vitrinite reflectance measurement—some technique enhancements and relationships,” International Journal of Coal Geology, vol. 19, no. 1-4, pp. 201–218, 1991. View at Google Scholar · View at Scopus
  25. J. C. Hower, R. F. Rathbone, G. D. Wild, and A. Davis, “Observations on the use of vitrinite maximum reflectance versus vitrinite random reflectance for high volatile bituminous coals,” Journal of Coal Quality, vol. 13, pp. 71–76, 1994. View at Google Scholar
  26. K. R. Wilks, M. Mastalerz, R. M. Bustin, and J. V. Ross, “The role of shear strain in the graphitization of a high-volatile bituminous and an anthracitic coal,” International Journal of Coal Geology, vol. 22, no. 3-4, pp. 247–277, 1993. View at Google Scholar · View at Scopus
  27. D. W. Houseknecht and C. M. B. Weesner, “Rotational reflectance of dispersed vitrinite from the Arkoma basin,” Organic Geochemistry, vol. 26, no. 3-4, pp. 191–206, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. J. V. Ross and R. M. Bustin, “Vitrinite anisotropy resulting from simple shear experiments at high temperature and high confining pressure,” International Journal of Coal Geology, vol. 33, no. 2, pp. 153–168, 1997. View at Google Scholar · View at Scopus
  29. S. Duber and J. N. Rouzaud, “Calculation of relectance values for two models of texture of carbon materials,” International Journal of Coal Geology, vol. 38, no. 3-4, pp. 333–348, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Duber, S. Pusz, B. K. Kwiecińska, and J. N. Rouzaud, “On the optically biaxial character and heterogeneity of anthracites,” International Journal of Coal Geology, vol. 44, no. 3-4, pp. 227–250, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. A. C. Cook, D. G. Murchison, and E. Scott, “Optically biaxial anthracitic vitrinites,” Fuel, vol. 51, no. 3, pp. 180–184, 1972. View at Google Scholar · View at Scopus
  32. F. Ting, “Uniaxial and biaxial vitrinite reflectance models and their relationship to paleotectonics,” in Organic Maturation Studies and Fossil Fuel Exploration, J. Brooks, Ed., pp. 379–392, Academic Press, London, UK, 1981. View at Google Scholar
  33. R. M. Bustin, J. V. Ross, and I. Moffat, “Vitrinite anisotropy under differential stress and high confining pressure and temperature: preliminary observations,” International Journal of Coal Geology, vol. 6, no. 4, pp. 343–351, 1986. View at Google Scholar · View at Scopus
  34. B. Jiang, F. Jin, Q. Zhou, and W. Wang, “Experimental research on deformation of optical fabric of coal vitrinite reflectance,” Coal Geology & Exploration, vol. 25, pp. 11–15, 1997 (Chinese). View at Google Scholar
  35. J. G. Ramsay, Folding and Fracturing of Rocks, Mc Graw-Hill, New York, NY, USA, 1967.
  36. Y. D. Wu, Y. W. Ju, Q. L. Hou, S. Hu, S. Q. Ni, and J. J. Fan, “Characteristics of tectono-thermal modeling and restriction on coalbed-gas generation in Sulin mining area, Huaibei coalfield,” Progress in Natural Science, vol. 19, pp. 1134–1141, 2009 (Chinese). View at Google Scholar
  37. W. Guiliang, J. Bo, C. Daiyong, Z. Hai, and J. Weijun, “On the Xuzhou-Suzhou arcuate duplex-imbricate fan thrust system,” Acta Geologica Sinica, vol. 72, no. 3, pp. 235–236, 1998. View at Google Scholar · View at Scopus
  38. Y. W. Ju, Q. L. Hou, B. Jiang, G. L. Wang, and A. M. Fang, “Tectonic coals: structure and physical properties of reservoirs,” in Proceedings of the Proceedings of the 6th International Workshop on CBM/CMM in China, Beijing, China, 2006.
  39. G. Zhu, C. Song, D. Wang, G. Liu, and J. Xu, “Studies on 40Ar/ 39Ar thermochronology of strike-slip time of the Tan-Lu fault zone and their tectonic implications,” Science in China, Series D, vol. 44, no. 11, pp. 1002–1009, 2001. View at Google Scholar · View at Scopus
  40. G. Zhu, Y. Wang, G. Liu, M. Niu, C. Xie, and C. Li, “40Ar/ 39Ar dating of strike-slip motion on the Tan-Lu fault zone, East China,” Journal of Structural Geology, vol. 27, no. 8, pp. 1379–1398, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Zhu, C. L. Xie, Y. S. Wang, M. L. Niu, and G. S. Liu, “Characteristics of the Tan-Lu high-pressure strike-slip ductile shear zone and its 40Ar/39Ar dating,” Acta Petrologica Sinica, vol. 21, no. 6, pp. 1687–1702, 2005. View at Google Scholar · View at Scopus
  42. A. Yin and S. Nie, “An indentation model for the north and south China collision and development of the Tan-Lu and Honam fault systems, Eastern Asia,” Tectonics, vol. 12, pp. 810–813, 1993. View at Google Scholar
  43. G. Zhu, Y. S. Wang, N. M. Lan, G. S. Liu, and C. L. Xie, “Synorogenic movement of the Tan-Lu fault zone,” Earth Science Frontiers, vol. 11, pp. 169–182, 2004 (Chinese). View at Google Scholar
  44. D. Liu, Y. Yao, D. Tang, S. Tang, Y. Che, and W. Huang, “Coal reservoir characteristics and coalbed methane resource assessment in Huainan and Huaibei coalfields, Southern North China,” International Journal of Coal Geology, vol. 79, no. 3, pp. 97–112, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Flinn, “On folding during three-dimensional progressive deformation,” Quarterly Journal of the Geological Society, vol. 118, pp. 385–428, 1962. View at Google Scholar
  46. C. Barker and M. Pawlewicz, “The correlation of vitrinite reflectance with maximum temperature in humic organic matter,” Lecture Notes in Earth Science, vol. 5, pp. 79–81, 1986. View at Google Scholar
  47. F. Goodarzi and D. G. Murchison, “Optical properties of carbonized vitrinites,” Fuel, vol. 51, no. 4, pp. 322–328, 1972. View at Google Scholar · View at Scopus
  48. D. G. Murchison, “Petrographic aspects of coal structure: reactivity of macerals in laboratory and natural environments,” Fuel, vol. 70, no. 3, pp. 296–315, 1991. View at Google Scholar · View at Scopus
  49. S. Duber, J. N. Rouzaud, C. Clinard, and S. Pusz, “Microporosity and optical properties of some activated chars,” Fuel Processing Technology, vol. 77-78, pp. 221–227, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. G. L. Wang, B. Jiang, D. Y. Cao, H. Zou, and W. J. Jin, “On the Xuzhou-Suzhou arcuate duplex-imbricate fan thrust system.,” Acta Geologica Sinica (in Chinese with English summary), vol. 72, pp. 228–236, 1998. View at Google Scholar
  51. M. Zhai, R. Zhu, J. Liu et al., “Time range of Mesozoic tectonic regime inversion in eastern North China Block,” Science in China, Series D, vol. 47, no. 2, pp. 151–159, 2004. View at Publisher · View at Google Scholar · View at Scopus