Table of Contents
Journal of Geological Research
Volume 2012, Article ID 590857, 8 pages
http://dx.doi.org/10.1155/2012/590857
Research Article

FTIR and Raman Spectral Research on Metamorphism and Deformation of Coal

1Key Laboratory of Computational Geodynamics, College of Earth Science, Graduate University of Chinese Academy of Sciences, Beijing 100049, China
2State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing 102249, China
3Key Lab of Basin Structure and Petroleum Accumulation, PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China

Received 13 January 2012; Revised 17 April 2012; Accepted 17 April 2012

Academic Editor: Hongyuan Zhang

Copyright © 2012 Xiaoshi Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. R. Levine and A. Davis, “The relationship of coal optical fabrics to alleghanian tectonic deformation in the central Appalachian fold-and-thrust belt,” Pennsylvania Geological Society of America Bulletin, vol. 101, no. 10, pp. 1333–1347, 1989. View at Google Scholar · View at Scopus
  2. D. Y. Cao, S. R. Zhang, and D. Y. Ren, “The influence of structural deformation on coalification: a case study of carboniferous coal measures in the Northern foothills of the dabie orogenic belt,” Geological Review, vol. 48, no. 3, pp. 313–317, 2002. View at Google Scholar
  3. D. J. Zhang and X. F. Xian, “I.R. spectroscopy analysis of the groups in coal macromolecule,” Journal of Chongqing University, vol. 13, no. 5, pp. 6–7, 1990. View at Google Scholar
  4. X. D. Zhu, Z. B. Zhu, and C. J. Han, “Quantitative determination of oxygen-containing functional groups in coal by FTIR spectroscopy,” Journal of Fuel Chemistry and Technology, vol. 27, no. 4, pp. 335–339, 1999. View at Google Scholar · View at Scopus
  5. J. Ibarra, E. Muñoz, and R. Moliner, “FTIR study of the evolution of coal structure during the coalification process,” Organic Geochemistry, vol. 24, no. 6-7, pp. 725–735, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. W. Ju, B. Jiang, G. L. Wang et al., Tectonically Deformed Coals: Structure and Physical Properties of Reservoirs, China University of Mining and Technology Press, Xuzhou, China, 2005.
  7. Y. W. Ju, B. Jiang, Q. L. Hou, and G. L. Wang, “FTIR spectroscopic study on the stress effect of compositions of macromolecular structure in tectonically deformed coals,” Spectroscopy and Spectral Analysis, vol. 25, no. 8, pp. 1216–1220, 2005. View at Google Scholar · View at Scopus
  8. J. Jehlička, O. Urban, and J. Pokorný, “Raman spectroscopy of carbon and solid bitumens in sedimentary and metamorphic rocks,” Spectrochimica Acta A, vol. 59, no. 10, pp. 2341–2352, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. C. P. Marshall, E. J. Javaux, A. H. Knoll, and M. R. Walter, “Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of proterozoic acritarchs: a new approach to Palaeobiology,” Precambrian Research, vol. 138, no. 3-4, pp. 208–224, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Bernard, O. Beyssac, K. Benzerara, N. Findling, G. Tzvetkov, and G. E. Brown, “XANES, Raman and XRD study of anthracene-based cokes and saccharose-based chars submitted to high-temperature pyrolysis,” Carbon, vol. 48, no. 9, pp. 2506–2516, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Cuesta, P. Dhamelincourt, J. Laureyns, and J. M. D. Tascón, “Comparative performance of X-ray diffraction and Raman microprobe techniques for the study of carbon materials,” Journal of Materials Chemistry, vol. 8, pp. 2875–2879, 1998. View at Publisher · View at Google Scholar
  12. O. Beyssac, L. Bollinger, J. P. Avouac, and B. Goffé, “Thermal metamorphism in the lesser Himalaya of Nepal determined from Raman spectroscopy of carbonaceous material,” Earth and Planetary Science Letters, vol. 225, no. 1-2, pp. 233–241, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Jehlička, O. Urban, and J. Pokorný, “Raman spectroscopy of carbon and solid bitumens in sedimentary and metamorphic rocks,” Spectrochimica Acta A, vol. 59, no. 10, pp. 2341–2352, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Jehlička and C. Beny, “First and second order Raman spectra of natural highly carbonified organic compounds from metamorphic rocks,” Journal of Molecular Structure, vol. 480-481, pp. 541–545, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. O. Urban, J. Jehlička, J. Pokorný, and J. N. Rouzaud, “Influence of laminar flow on preorientation of coal tar pitch structural units: Raman microspectroscopic study,” Spectrochimica Acta A, vol. 59, no. 10, pp. 2331–2340, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Qin, Micropetrology and Structural Evolution of High-Rank Coals in P. R. China, China University of Mining and Technology Press, Xuzhou, China, 1994.
  17. Y. W. Ju and X. S. Li, “New research progress on the ultrastructure of tectonically deformed coals,” Progress in Natural Science, vol. 19, no. 11, pp. 1455–1466, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. W. Ju, B. Jiang, Q. L. Hou, and G. L. Wang, “The new structure-genetic classification system in tectonically deformed coals and its geological significance,” Journal of China Coal Society, vol. 29, no. 5, pp. 513–517, 2004. View at Google Scholar · View at Scopus
  19. Y. W. Ju, G. L. Wang, B. Jiang, and Q. Hou, “Microcosmic analysis of ductile shearing zones of coal seams of brittle deformation domain in superficial lithosphere,” Science in China D, vol. 47, no. 5, pp. 393–404, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. W. Ju, H. Lin, X. S. Li et al., “Tectonic deformation and dynamic metamorphism of coal,” Earth Science Frontiers, vol. 16, no. 1, pp. 158–166, 2009. View at Google Scholar
  21. D. Y. Cao, X. M. Li, and S. R. Zhang, “Influence of tectonic stress on coalification: stress degradation mechanism and stress polycondensation mechanism,” Science in China D, vol. 50, no. 1, pp. 43–54, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Lin, Y. W. Ju, Q. L. Hou et al., “Raman spectra of tectonically deformed coals in brittle and ductile deformation mechanisms and its response to structural components,” Progress in Natural Science, vol. 19, no. 10, pp. 1117–1125, 2009. View at Google Scholar
  23. D. J. Zhang and X. F. Xian, “The study of the macromolecular structure of coal by FTIR spectroscopy,” Spectroscopy and Spectral Analysis, vol. 9, no. 3, pp. 17–19, 1989. View at Google Scholar
  24. M. Nakamizo, R. Kammereck, and P. L. Walker Jr., “Laser Raman studies on carbons,” Carbon, vol. 12, no. 3, pp. 259–267, 1974. View at Google Scholar · View at Scopus
  25. M. F. Li, F. G. Zeng, F. H. Qi, and B. L. Sun, “Raman spectroscopic characteristics of different rank coals and the relation with XRD structural parameters,” Spectroscopy and Spectral Analysis, vol. 29, no. 9, pp. 2446–2449, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. Zheng and X. H. Chen, “Raman spectra of coal-based graphite,” Science in China B, vol. 38, no. 1, pp. 97–106, 1995. View at Google Scholar · View at Scopus
  27. Q. L. Hou, J. L. Li, S. Sun et al., “Discovery and mechanism discussion of supergene micro-ductile shear zone,” Chinese Science Bulletin, vol. 40, no. 10, pp. 824–827, 1995. View at Google Scholar
  28. Y. W. Ju, B. Jiang, Q. L. Hou, G. Wang, and S. Ni, “13C NMR spectra of tectonic coals and the effects of stress on structural components,” Science in China D, vol. 5, no. 9, pp. 847–861, 2005. View at Google Scholar · View at Scopus
  29. X. S. Li, Y. W. Ju, Q. L. Hou et al., “Structural response to deformation of the tectonically deformed coal macromolecular,” Acta Geologica Sinica (English Eition), In press, 2012. View at Google Scholar
  30. Q. L. Hou and D. L. Zhong, “The deformation and metamorphism in the wuliangshan ductile shear zone in Western Yunnan, China,” in Memoir of Lithospheric Tectonic Evolution Research, pp. 24–29, Seismology Press, Beijing, China, 1st edition, 1993. View at Google Scholar