Table of Contents
Journal of Geological Research
Volume 2013, Article ID 201757, 16 pages
http://dx.doi.org/10.1155/2013/201757
Research Article

Remote Sensing and Geographic Information System for Fault Segments Mapping a Study from Taiz Area, Yemen

Geology Department, Faculty of Applied Science, Taiz University, Taiz, Yemen

Received 13 June 2013; Revised 19 September 2013; Accepted 19 September 2013

Academic Editor: Karoly Nemeth

Copyright © 2013 Anwar Abdullah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Dehandschutter, Study of the structural evolution of continental basins in Altai, central Asia [Ph.D. thesis], 2001.
  2. W. H. Hobbs, “Lineaments of the Atlantic Border region,” Geological Society, vol. 15, pp. 483–506, 1904. View at Google Scholar
  3. W. H. Hobbs, “Repeating patterns in the relief and in the structure of the land,” Geological Society, vol. 22, pp. 123–176, 1911. View at Google Scholar
  4. L. E. Arlegui and M. A. Soriano, “Characterizing lineaments from satellite images and field studies in the central Ebro basin (NE Spain),” International Journal of Remote Sensing, vol. 19, no. 16, pp. 3169–3185, 1998. View at Google Scholar · View at Scopus
  5. R. T. Walker, “A remote sensing study of active folding and faulting in southern Kerman province, southeast Iran,” Journal of Structural Geology, vol. 28, no. 4, pp. 654–668, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Travaglia and N. Dainelli, Groundwater Search by Remote Sensing: A Methodological Approach, Environment and Natural Resources, FAO, Rome, Italy, 2003.
  7. M. Morisawa, Rivers, Longman, New York, NY, USA, 1985.
  8. C. E. Brockmann, A. Fernandez, R. Ballon, and I. I. Claure, “Analysis of geological structures based on landsat-1 images,” in Remote Sensing Applications for Mineral Exploration, W. L. Smith, Ed., pp. 292–317, Dowden, Hutchinson and Ross, Strondsberg, Pa, USA, 1977. View at Google Scholar
  9. P. T. Nguyen and D. Ho, “Multiple source data processing in remote sensing,” in Digital Image Processing in Remote Sensing, J. P. Muller, Ed., pp. 153–176, Taylor and Francis, Philadelphia, Pa, USA, 1988. View at Google Scholar
  10. X. Chen, Application of remote sensing and GIS techniques for environmental geologic investigation, northeast Iowa [Ph.D. thesis], University of Iowa, Iowa, Iowa, USA, 1992.
  11. A. Ü. Akman and K. Tüfekçi, “Determination and characterization of fault systems and geomorphological features by RS and GIS techniques in the WSW part of Turkey,” in Proceedings of the 20th ISPRS Congress, pp. 899–904, Istanbul, Turkey, 2004.
  12. P. R. E. Guerra, Faulting evidence of isostatic uplift in the rincon mountains metamorphic core complex, an image processing analysis [Ph.D. thesis], 2000.
  13. M. A. Juhari and A. Ibrahim, “Geological applications of Landsat TM imagery: mapping and analysis of lineaments in NW Peninsula Malaysia,” in Proceedings of the 18th Asian Conference on Remote Sensing, pp. J-1-1–J-1-8, Kuala Lumpur, Malaysia, 1997.
  14. W. F. P. G. Micheal, “Lineaments analysis South Florida region, aquifer storage and recovery regional study,” Draft Technical Memorandum, Central and Southren Florida Project, Army Corps of Engineers, Jacksonville, Fla, USA, 2004. View at Google Scholar
  15. I. D. Novak and N. Soulakellis, “Identifying geomorphic features using LANDSAT-5/TM data processing techniques on Lesvos, Greece,” Geomorphology, vol. 34, no. 1-2, pp. 101–109, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Solomon and W. Ghebreab, “Lineament characterization and their tectonic significance using Landsat TM data and field studies in the central highlands of Eritrea,” Journal of African Earth Sciences, vol. 46, no. 4, pp. 371–378, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. K. S. Kavak and H. Cetin, “A detailed geologic lineament analysis using landsat TM data of Gölmarmara/Manisa region, Turkey,” Online Journal of Earth Sciences, vol. 1, no. 3, pp. 145–153, 2007. View at Google Scholar
  18. L. A. Rutty, The basement fracture pattern of sothern Ontario: a tectonic interpretation based on landsat TM imagery, airphotos and field data [M.S. thesis], National Library of Canada, Ottawa, Canada, 1993.
  19. K. M. M. Elias, “Multiple data set integration for structural and stratigraphic analysis of Oil and Gas bearing formation using GIS,” in Proceedings of the Map India Conference, Geology & Mineral Resource, 2003.
  20. Geological Survey of Yemen (GSY), Geological Map of Taiz Area (1:250, 000), 1990.
  21. S. Bai, J. Wang, G. N. Lu, P. G. Zhou, S. S. Hou, and S. N. Xu, “GIS-based logistic regression for landslide susceptibility mapping of the zhongxian segment in the three gorges area, China,” Geomorphology, vol. 115, pp. 23–31, 2010. View at Google Scholar
  22. R. L. Bates and J. A. Jackson, Glossary of Geology, American Geological Institute, Alexandria, Va, USA, 1987.
  23. M. L. Süzen and V. Doyuran, “Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey,” Engineering Geology, vol. 71, no. 3-4, pp. 303–321, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Guzzetti, A. Carrara, M. Cardinali, and P. Reichenbach, “Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy,” Geomorphology, vol. 31, no. 1–4, pp. 181–216, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. C. F. Chung and A. G. Fabbri, “Probabilistic prediction models for landslide hazard mapping,” Photogrammetric Engineering and Remote Sensing, vol. 65, no. 12, pp. 1389–1399, 1999. View at Google Scholar · View at Scopus
  26. F. C. Dai and C. F. Lee, “Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong,” Geomorphology, vol. 42, no. 3-4, pp. 213–228, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Ayalew, H. Yamagishi, and N. Ugawa, “Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano river, Niigata prefecture, Japan,” Landslides, vol. 1, pp. 73–81, 2004. View at Google Scholar
  28. T. B. Minor, J. A. Carter, M. M. Chesley, and R. B. Knowles, “An integrated approach to groundwater exploration in developing countries using GIS and remote sensing,” in Proceedings of the International American Congress on Surveying and Mapping/American Society for Photogrammetry and Remote Sensing (ACSM/ASPRS '94), pp. 418–428, 1994.
  29. S. Lee and K. Min, “Statistical analysis of landslide susceptibility at Yongin, Korea,” Environmental Geology, vol. 40, no. 9, pp. 1095–1113, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Donati and M. C. Turrini, “An objective method to rank the importance of the factors predisposing to landslides with the GIS methodology: application to an area of the Apennines (Valnerina, Perugia, Italy),” Engineering Geology, vol. 63, no. 3-4, pp. 277–289, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Günther, “SLOPEMAP: programs for automated mapping of geometrical and kinematical properties of hard rock hill slopes,” Computers and Geosciences, vol. 29, no. 7, pp. 865–875, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. S. A. Ali and S. Pirasteh, “Geological applications of Landsat Enhanced Thematic Mapper (ETM) data and Geographic Information System (GIS): mapping and structural interpretation in south-west Iran, Zagros Structural Belt,” International Journal of Remote Sensing, vol. 25, no. 21, pp. 4715–4727, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Jordan, B. M. L. Meijninger, D. J. J. V. Hinsbergen, J. E. Meulenkamp, and P. M. V. Dijk, “Extraction of morphotectonic features from DEMs: development and applications for study areas in Hungary and NW Greece,” International Journal of Applied Earth Observation and Geoinformation, vol. 7, no. 3, pp. 163–182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Anwar, M. A. Juhari, and A. Ibrahim, “The extraction of lineaments using slope image derived from digital elevation model: case study of Sungai Lembing—Maran area, Malaysia,” Journal of Applied Sciences Research, vol. 6, no. 11, pp. 1745–1751, 2010. View at Google Scholar · View at Scopus
  35. K. Koike, S. Nagano, and M. Ohmi, “Lineament analysis of satellite images using a Segment Tracing Algorithm (STA),” Computers and Geosciences, vol. 21, no. 9, pp. 1091–1104, 1995. View at Google Scholar · View at Scopus
  36. A. Mah, G. R. Taylor, P. Lennox, and L. Balia, “Lineament analysis of Landsat Thematic Mapper images, Northern Territory, Australia,” Photogrammetric Engineering & Remote Sensing, vol. 61, no. 6, pp. 761–773, 1995. View at Google Scholar · View at Scopus
  37. A. Anwar, M. A. Juhari, and A. Ibrahim, “A comparison of landsat TM and SPOT data for lineament mapping in Hulu Lepar area, Pahang, Malaysia,” European Journal of Scientific Research, vol. 34, no. 3, pp. 406–415, 2009. View at Google Scholar · View at Scopus
  38. A. Masoud and K. Koike, “Tectonic architecture through Landsat-7 ETM+/SRTM DEM-derived lineaments and relationship to the hydrogeologic setting in Siwa region, NW Egypt,” Journal of African Earth Sciences, vol. 45, no. 4-5, pp. 467–477, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. M. L. Süzen and V. Toprak, “Filtering of satellite images in geological lineament analyses: an application to a fault zone in Central Turkey,” International Journal of Remote Sensing, vol. 19, no. 6, pp. 1101–1114, 1998. View at Google Scholar · View at Scopus
  40. A. Ganas, S. Pavlides, and V. Karastathis, “DEM-based morphometry of range-front escarpments in Attica, central Greece, and its relation to fault slip rates,” Geomorphology, vol. 65, no. 3-4, pp. 301–319, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Sarapirome, A. Surinkum, and P. Saksutthipong, “Application of DEM data to geological interpretation: Thong Pha Phum area, Thailand,” in Proceedings of the 23rd Asian Conference on Remote Sensing (ACRS '02), Kathmandu, Nepal, 2002.
  42. G. Sarp and V. Toprak, “An Integrated Lineament Analysis from Satellite Images,” in Proceedings of the 28th Asian Conference on Remote Sensing (ACRS '07), Kuala Lumpur, Malaysia, 2007.
  43. A. Anwar, M. A. Juhari, and A. Ibrahim, “Automatic mapping of lineaments using shaded relief images derived from digital elevation model (DEMs) in the Maran—Sungi Lembing area, Malaysia,” Electronic Journal of Geotechnical Engineering, vol. 15, pp. 949–957, 2010. View at Google Scholar · View at Scopus
  44. P. C. I. Geomatica, PCI Geomatica User’s Guide Version 9. 1, Richmond Hill, Ontario, Canada, 2001.
  45. A. Ibrahim and M. A. Juhari, Dictionary of Geological the Basic Terms, Malaysia, National University of Malaysia, Selangor, Malaysia, 1990.
  46. National Water Resources Authority, Hydrogeologic Map of Taiz Area (1: 50, 000), Dar El-Yemen Hydro Consultant, 1997.
  47. L. Aller, T. Bennett, J. H. Lehr, and R. J. Petty, “DRASTIC: a standard system for evaluating groundwater pollution potential using hydrogeologic settings,” Tech. Rep. EPA/600/2 85/018 R.S., Kerr Enviromental Research Laboratory, Enviromental Protection Agency, Ada, Okla, USA, 1995. View at Google Scholar
  48. M. J. Crozier, “Field Assessment of Slope Instability,” in Slope Instability, D. Brunsden and D. Prior, Eds., pp. 103–142, John Wiley and Sons, New York, NY, USA, 1984. View at Google Scholar
  49. Q. Zaruba and V. Mencl, Landslides and Their Control, Elsevier, Amsterdam, The Netherlands, 1982.
  50. I. Das, S. Sahoo, C. van Westen, A. Stein, and R. Hack, “Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India),” Geomorphology, vol. 114, no. 4, pp. 627–637, 2010. View at Publisher · View at Google Scholar · View at Scopus