Table of Contents
Journal of Geological Research
Volume 2013, Article ID 735498, 11 pages
http://dx.doi.org/10.1155/2013/735498
Research Article

Petrogenesis of Quaternary Shoshonitic Volcanism in NE Iran (Ardabil): Implication for Postcollisional Magmatism

Department of Archaeology, University of Mohagheghe Ardabili, Ardabil, Iran

Received 3 April 2013; Revised 27 August 2013; Accepted 9 October 2013

Academic Editor: Ryszard Kryza

Copyright © 2013 Habib Shahbazi Shiran. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Dilek and D. L. Whitney, “Cenozoic crustal evolution in central Anatolia: extension, magmatism and landscape development,” in Proceedings of the 3rd International Conference on the Geology of the Eastern Mediterranean, pp. 183–192, 2000.
  2. Y. Dilek, N. Imamverdiyev, and Ş. Altunkaynak, “Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint,” International Geology Review, vol. 52, no. 4-6, pp. 536–578, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. J. A. Pearce, J. F. Bender, S. E. De Long et al., “Genesis of collision volcanism in Eastern Anatolia, Turkey,” Journal of Volcanology and Geothermal Research, vol. 44, no. 1-2, pp. 189–229, 1990. View at Google Scholar · View at Scopus
  4. M. Keskin, “Magma generation by slab steepening and breakoff beneath a subduction-accretion complex: an alternative model for collision-related volcanism in Eastern Anatolia, Turkey,” Geophysical Research Letters, vol. 30, no. 24, pp. 1–9, 2003. View at Google Scholar · View at Scopus
  5. M. Kheirkhah, M. B. Allen, and M. Emami, “Quaternary syn-collision magmatism from the Iran/Turkey borderlands,” Journal of Volcanology and Geothermal Research, vol. 182, no. 1-2, pp. 1–12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Dilek and Ş. Altunkaynak, “Geochemical and temporal evolution of Cenozoic magmatism in Western Turkey: mantle response to collision, slab break-off, and lithospheric tearing in an orogenic belt,” Geological Society of London Special Publication, vol. 311, pp. 213–233, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Riou, C. Dupuy, and J. Dostal, “Geochemistry of coexisting alkaline and calc-alkaline volcanic rocks from northern Azerbaijan (N.W. Iran),” Journal of Volcanology and Geothermal Research, vol. 11, no. 2-4, pp. 253–275, 1981. View at Google Scholar · View at Scopus
  8. D. Dhont and J. Chorowicz, “Review of the neotectonics of the Eastern Turkish-Armenian Plateau by geomorphic analysis of digital elevation model imagery,” International Journal of Earth Sciences, vol. 95, no. 1, pp. 34–49, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Özdemir, Ö. Karaoǧlu, A. Ü. Tolluoǧlu, and N. Güleç, “Volcanostratigraphy and petrogenesis of the Nemrut stratovolcano (East Anatolian High Plateau): the most recent post-collisional volcanism in Turkey,” Chemical Geology, vol. 226, no. 3-4, pp. 189–211, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. H. E. Çubukçu, I. Ulusoy, E. Aydar et al., “Mt. Nemrut volcano (Eastern Turkey): temporal petrological evolution,” Journal of Volcanology and Geothermal Research, vol. 209-210, pp. 33–60, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Innocenti, R. Mazzuoli, G. Pasquarè, F. Radicati Di Brozolo, and L. Villari, “Tertiary and quaternary volcanism of the Erzurumkars area (Eastern Turkey): geochronological data and geodynamic evolution,” Journal of Volcanology and Geothermal Research, vol. 13, no. 3-4, pp. 223–240, 1982. View at Google Scholar · View at Scopus
  12. P. Comin-Chiaramonti, S. Meriani, R. Mosca, and S. Sinigoi, “On the occurrence of analcime in the northeastern Azerbaijan volcanics (northwestern Iran),” Lithos, vol. 12, no. 3, pp. 187–198, 1979. View at Google Scholar · View at Scopus
  13. M. Aghazadeh, A. Castro, Z. Badrzadeh, and K. Vogt, “Post-collisional polycyclic plutonism from the Zagros hinterland: the Shaivar Dagh plutonic complex, Alborz belt, Iran,” Geological Magazine, vol. 148, no. 5-6, pp. 980–1008, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Alberti, P. Comin-Chiaramonti, G. Di Battistini, R. Fioriti, and S. Sinigei, “Crystal fractionation in the eastern Azerbaijan (Iran) lower tertiary shoshonitic suite,” Neues Jahrbuch für Mineralogie, Monatshefte, vol. 1, pp. 35–48, 1981. View at Google Scholar
  15. J. Dostal and M. Zerbi, “Geochemistry of the Savalan volcano (northwestern Iran),” Chemical Geology, vol. 22, no. C, pp. 31–42, 1978. View at Google Scholar · View at Scopus
  16. J. Didon and Y. M. Germain, Le Sabalan, Volcan Plio-Quaternaire de l Azerbaidjan oriental (Iran): Etude geologique et petrographique de le difice et de son environment regional [Ph.D. thesis], Docteur du 3 eme cycle. Université de Grenoble, Grenoble, France, 1976.
  17. J. Leterrier, R. Maury, P. Thonon, D. Girard, and M. Marchal, “Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series,” Earth and Planetary Science Letters, vol. 59, no. 1, pp. 139–154, 1982. View at Google Scholar · View at Scopus
  18. M. J. L. Bas, R. W. L. Maitre, A. Streckeisen, and B. Zanettin, “A chemical classification of volcanic rocks based on the total alkali-silica diagram,” Journal of Petrology, vol. 27, no. 3, pp. 745–750, 1986. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Peccerillo and S. R. Taylor, “Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey,” Contributions to Mineralogy and Petrology, vol. 58, no. 1, pp. 63–81, 1976. View at Publisher · View at Google Scholar · View at Scopus
  20. W. F. McDonough and S.-S. Sun, “The composition of the Earth,” Chemical Geology, vol. 120, no. 3-4, pp. 223–253, 1995. View at Google Scholar · View at Scopus
  21. H. Azizi, Y. Asahara, B. Mehrabi, and S. L. Chung, “Geochronological and geochemical constraints on the petrogenesis of high-K granite from the Suffi abad area, Sanandaj-Sirjan Zone, NW Iran,” Chemie der Erde—Geochemistry, vol. 71, no. 4, pp. 363–376, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. O. Karsli, M. Ketenci, I. Uysal et al., “Adakite-like granitoid porphyries in the Eastern Pontides, NE Turkey: potential parental melts and geodynamic implications,” Lithos, vol. 127, no. 1-2, pp. 354–372, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Zhang, C. Ma, and F. Holtz, “Origin of high-Mg adakitic magmatic enclaves from the Meichuan pluton, southern Dabie orogen (central China): implications for delamination of the lower continental crust and melt-mantle interaction,” Lithos, vol. 119, no. 3-4, pp. 467–484, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Jahangiri, “Post-collisional Miocene adakitic volcanism in NW Iran: geochemical and geodynamic implications,” Journal of Asian Earth Sciences, vol. 30, no. 3-4, pp. 433–447, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. J. A. Pearce, “Trace element characteristics of lavas from destructive plate boundaries,” in Andesites, R. S. Thorpe, Ed., pp. 525–548, Wiley, New York, NY, USA, 1982. View at Google Scholar
  26. R. Bezard, R. Hébert, C. Wang, J. Dostal, J. Dai, and H. Zhong, “Petrology and geochemistry of the Xiugugabu ophiolitic massif, western Yarlung Zangbo suture zone, Tibet,” Lithos, vol. 125, no. 1-2, pp. 347–367, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Keskin, J. A. Pearce, P. D. Kempton, and P. Greenwood, “Magma-crust interactions and magma plumbing in a postcollisional setting: geochemical evidence from the Erzurum-Kars volcanic plateau, eastern Turkey,” Geological Society of America Special Paper, no. 409, pp. 475–505, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. A. M. C. Şengör, S. Özeren, T. Genç, and E. Zor, “East Anatolian High Plateau as a mantle-supported, north-south shortened domal structure,” Geophysical Research Letters, vol. 30, no. 24, pp. 1–8, 2003. View at Google Scholar · View at Scopus