Table of Contents
Journal of Geological Research
Volume 2013, Article ID 805451, 12 pages
Research Article

Multiphase Alkaline Basalts of Central Al-Haruj Al-Abyad of Libya: Petrological and Geochemical Aspects

1Geology Department, Faculty of Science, Zagazig University, Egypt
2Geology Department, Faculty of Science, El-Zawia University, Libya

Received 4 February 2013; Revised 10 April 2013; Accepted 12 April 2013

Academic Editor: Karoly Nemeth

Copyright © 2013 Abdel-Aal M. Abdel-Karim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Al-Haruj basalts that represent the largest volcanic province in Libya consist of four lava flow phases of varying thicknesses, extensions, and dating. Their eruption is generally controlled by the larger Afro-Arabian rift system. The flow phases range from olivine rich and/or olivine dolerites to olivine and/or normal basalts that consist mainly of variable olivine, clinopyroxene, plagioclase, and glass. Olivine, plagioclase, and clinopyroxene form abundant porphyritic crystals. In olivine-rich basalt and olivine basalt, these minerals occur as glomerophyric or seriate clusters of an individual mineral or group of minerals. Groundmass textures are variably intergranular, intersertal, vitrophyric, and flow. The pyroclastic, clastogenic flows and/or ejecta of the volcanic cones show porphyritic, vitrophric, pilotaxitic, and vesicular textures. They are classified into tholeiite, alkaline, and olivine basalts. Three main groups are recorded. Basalts of phase 1 are generated from tholeiitic to alkaline magma, while those of phases 3 and 4 are derived from alkaline magma. It is proposed that the tholeiitic basalts represent prerift stage magma generated by higher degree of partial melting (2.0–3.5%) of garnet-peridotite asthenospheric mantle source, at shallow depth, whereas the dominant alkaline basalts may represent the rift stage magma formed by low degree of partial melting (0.7–1.5%) and high fractionation of the same source, at greater depth in an intra-continental plate with OIB affinity. The melt generation could be also attributed to lithosphere extension associated with passive rise of variable enriched mantle.