Table of Contents Author Guidelines Submit a Manuscript
Journal of Geological Research
Volume 2013 (2013), Article ID 895160, 8 pages
http://dx.doi.org/10.1155/2013/895160
Research Article

Application of 2D Electrical Resistivity Tomography in Landfill Site: A Case Study of Iku, Ikare Akoko, Southwestern Nigeria

Department of Geology, Faculty of Science, Adekunle Ajasin University, PMB 1, Akungba-Akoko, Ondo State, Nigeria

Received 3 June 2013; Revised 5 September 2013; Accepted 9 September 2013

Academic Editor: Umberta Tinivella

Copyright © 2013 Cyril Chibueze Okpoli. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. R. Allen, A. Dillon, and M. O'Brien, “Approaches to landfill site selection in Ireland,” in Engineering Geology and the Environment, P. G. Marinos, G. C. Koukis, G. C. Tsiambaos, and G. C. Stournaras, Eds., pp. 1569–1574, Rotterdam, The Netherlands, 1997. View at Google Scholar
  2. J. D. Mather, “Preventing groundwater pollution from landfilled waste-is engineered containment an acceptable solution?” in Groundwater Quality, H. Nash and G. J. H. McCall, Eds., pp. 191–195, Chapman & Hall, London, UK, 1995. View at Google Scholar
  3. I. Georgaki, P. Soupios, N. Sakkas et al., “Evaluating the use of electrical resistivity imaging technique for improving CH4 and CO2 emission rate estimations in landfills,” Science of the Total Environment, vol. 389, no. 2-3, pp. 522–531, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Green, E. Lanz, H. Maurer, and D. Boerner, “Template for geophysical investigations of small landfills,” Leading Edge, vol. 18, no. 2, pp. 248–254, 1999. View at Google Scholar · View at Scopus
  5. K. H. Heitfeld and M. Heitfeld, “Sitting and planning of waste disposal facilities in difficult hydrogeological conditions,” in Engineering Geology and the Environment., P. G. Marinos, G. C. Koukis, G. C. Tsiambaos, and G. C. Stournaras, Eds., pp. 1623–1628, Rotterdam, The Netherlands, 1997. View at Google Scholar
  6. E. Lanz, L. Jemmi, R. Muller, A. Green, A. Pugin, and P. Huggenberger, “Integrated studies of Swiss waste disposal sites: results from georadar and other geophysical surveys,” in Proceedings of the 5th International Conference on Ground Penetrating Radar (GPR '94), pp. 1261–1274, 1994.
  7. L. Orlando and E. Marchesi, “Georadar as a tool to identify and characterise solid waste dump deposits,” Journal of Applied Geophysics, vol. 48, no. 3, pp. 163–174, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Saltas, F. Vallianatos, P. Soupios, J. P. Makris, and D. Triantis, “Application of dielectric spectroscopy to the detection of contamination in sandstone,” in Proceedings of the International Workshop in Geoenvironment and Geotechnics, pp. 269–274, Milos Island, Greece, September 2005.
  9. C. Bernstone, T. Dahlin, T. Ohlsson, and W. Hogland, “DC-resistivity mapping of internal landfill structures: two pre-excavation surveys,” Environmental Geology, vol. 39, no. 3-4, pp. 360–371, 2000. View at Google Scholar · View at Scopus
  10. E. Aristodemou and A. Thomas-Betts, “DC resistivity and induced polarisation investigations at a waste disposal site and its environments,” Journal of Applied Geophysics, vol. 44, no. 2-3, pp. 275–302, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. C. B. Dawson, J. W. Lane Jr., E. A. White, and M. Belaval, “Integrated geophysical characterization of the Winthrop landfill southern flow path, Winthrop, Maine,” in Proceedings of the Smposium on the Application of Geophysics to Engineering and Environmental Problems, p. 22, Environmental and Engineering Geophysical Society, Las Vegas, Nev, USA, February 2002.
  12. L. Bengtsson, D. Bendz, W. Hogland, H. Rosqvist, and M. Akesson, “Water balance for landfills of different age,” Journal of Hydrology, vol. 158, no. 3-4, pp. 203–217, 1994. View at Google Scholar · View at Scopus
  13. G. Trochobanogous, H. Theisen, and S. Vigil, Integrated Solid Waste Management, McGraw Hill, New York, NY, USA, 1993.
  14. S. O. Ojo, “Factor productivity in maize production in Ondo state Nigeria,” Applied Tropical Agriculture, vol. 15, pp. 57–65, 2000. View at Google Scholar
  15. M. H. Loke, I. Acworth, and T. Darlin, “A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys:,” Geophysics, vol. 35, pp. 266–271, 2003. View at Google Scholar
  16. C. Pomposiello, C. Dapeña, A. Favetto, and P. Boujon, “Application of geophysical methods to waste disposal studies,” in Municipal and Industrial Waste Disposal, X.-Y. Yu, Ed., 2012. View at Google Scholar
  17. C. Degroot-Hedlin and S. Constable, “Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data,” Geophysics, vol. 55, no. 12, pp. 1613–1624, 1990. View at Google Scholar · View at Scopus
  18. M. H. Loke and R. D. Barker, “Least-squares deconvolution of apparent resistivity pseudosections,” Geophysics, vol. 60, no. 6, pp. 1682–1690, 1995. View at Google Scholar · View at Scopus
  19. M. H. Loke and R. D. Barker, “Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method,” Geophysical Prospecting, vol. 44, no. 1, pp. 131–152, 1996. View at Google Scholar · View at Scopus
  20. M. H. Loke and R. D. Barker, “Practical techniques for 3D resistivity surveys and data inversion 1,” Geophysical Prospecting, vol. 44, no. 3, pp. 499–523, 1996. View at Google Scholar · View at Scopus
  21. P. Tsourlos, Modeling interpretation and inversion of multi-electrode resistivity survey data [DPhil thesis], University of York, 1995.