Table of Contents
Journal of Gravity
Volume 2013 (2013), Article ID 525696, 7 pages
http://dx.doi.org/10.1155/2013/525696
Research Article

Maxwell’s Equal Area Law and the Hawking-Page Phase Transition

Dipartimento di Fisica Teorica, Università di Trieste and INFN, 34151 Sezione di Trieste, Italy

Received 24 June 2013; Revised 12 September 2013; Accepted 8 October 2013

Academic Editor: Jose Antonio De Freitas Pacheco

Copyright © 2013 Euro Spallucci and Anais Smailagic. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Kastor, S. Ray, and J. Traschen, “Enthalpy and the mechanics of AdS black holes,” Classical and Quantum Gravity, vol. 26, no. 19, Article ID 195011, 2009. View at Publisher · View at Google Scholar
  2. A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, “Charged AdS black holes and catastrophic holography,” Physical Review D, vol. 60, no. 6, Article ID 064018, 17 pages, 1999. View at Publisher · View at Google Scholar
  3. A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, “Holography, thermodynamics, and fluctuations of charged AdS black holes,” Physical Review D, vol. 60, no. 10, Article ID 104026, 20 pages, 1999. View at Publisher · View at Google Scholar
  4. Y. D. Tsai, X. N. Wu, and Y. Yang, “Phase structure of the Kerr-AdS black hole,” Physical Review D, vol. 85, no. 4, Article ID 044005, 9 pages, 2012. View at Publisher · View at Google Scholar
  5. P. Nicolini and G. Torrieri, “The Hawking-Page crossover in noncommutative anti-deSitter space,” Journal of High Energy Physics, vol. 2011, no. 8, article 97, 2011. View at Publisher · View at Google Scholar
  6. B. P. Dolan, “The cosmological constant and black-hole thermodynamic potentials,” Classical and Quantum Gravity, vol. 28, no. 12, Article ID 125020, 2011. View at Google Scholar
  7. B. P. Dolan, “Pressure and volume in the first law of black hole thermodynamics,” Classical and Quantum Gravity, vol. 28, Article ID 235017, 2011. View at Google Scholar
  8. B. P. Dolan, “Compressibility of rotating black holes,” Physical Review D, vol. 84, no. 12, Article ID 127503, 3 pages, 2011. View at Publisher · View at Google Scholar
  9. B. P. Dolan, “Where is the PdV term in the first law of black hole thermodynamics?” in Open Questions in Cosmology, InTech, 2012. View at Publisher · View at Google Scholar
  10. M. M. Caldarelli, G. Cognola, and D. Klemm, “Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories,” Classical and Quantum Gravity, vol. 17, no. 2, pp. 399–420, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Cvetic, G. W. Gibbons, D. Kubiznak, and C. N. Pope, “Black hole enthalpy and an entropy inequality for the thermodynamic volume,” Physical Review D, vol. 84, no. 2, Article ID 024037, 17 pages, 2011. View at Publisher · View at Google Scholar
  12. H. Lu, Y. Pang, C. N. Pope, and J. F. Vazquez-Poritz, “AdS and Lifshitz black holes in conformal and Einstein-Weyl gravities,” Physical Review D, vol. 86, no. 4, Article ID 044011, 22 pages, 2012. View at Publisher · View at Google Scholar
  13. R. Banerjee, S. Ghosh, and D. Roychowdhury, “New type of phase transition in Reissner Nordström-AdS black hole and its thermodynamic geometry,” Physics Letters B, vol. 696, no. 1-2, pp. 156–162, 2011. View at Publisher · View at Google Scholar
  14. R. Banerjee and D. Roychowdhury, “Thermodynamics of phase transition in higher dimensional AdS black holes,” Journal of High Energy Physics, vol. 2011, no. 11, article 4, 2011. View at Publisher · View at Google Scholar
  15. R. Banerjee, S. K. Modak, and D. Roychowdhury, “A unified picture of phase transition: from liquid-vapour systems to AdS black holes,” Journal of High Energy Physics, vol. 2012, no. 10, article 125, 2012. View at Publisher · View at Google Scholar
  16. A. Smailagic and E. Spallucci, “Thermodynamical phases of a regular SAdS BH,” International Journal of Modern Physics D, vol. 22, no. 3, Article ID 1350010, 12 pages, 2013. View at Publisher · View at Google Scholar
  17. E. Spallucci and A. Smailagic, “Maxwellʼs equal-area law for charged Anti-de Sitter black holes,” Physics Letters B, vol. 723, no. 4-5, pp. 436–441, 2013. View at Publisher · View at Google Scholar
  18. S. W. Hawking and D. N. Page, “Thermodynamics of black holes in anti-de Sitter space,” Communications in Mathematical Physics, vol. 87, no. 4, pp. 577–588, 1983. View at Publisher · View at Google Scholar
  19. E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,” Advances in Theoretical and Mathematical Physics, vol. 2, pp. 505–532, 1998. View at Google Scholar
  20. E. Witten, “Anti-de Sitter space and holography,” Advances in Theoretical and Mathematical Physics, vol. 2, pp. 253–291, 1998. View at Google Scholar
  21. R. C. Myers and S. E. Vazquez, “Quark soup al dente: applied superstring theory,” Classical and Quantum Gravity, vol. 25, no. 11, Article ID 114008, 2008. View at Publisher · View at Google Scholar
  22. D. Kubiznak and R. B. Mann, “PV criticality of charged AdS black holes,” Journal of High Energy Physics, vol. 2012, no. 7, article 33, 2012. View at Publisher · View at Google Scholar
  23. S. Gunasekaran, D. Kubiznak, and R. B. Mann, “Extended phase space thermodynamics for charged and rotating black holes and Born-Infeld vacuum polarization,” Journal of High Energy Physics, vol. 2012, no. 11, article 110, 2012. View at Google Scholar