Table of Contents
Journal of Inorganic Chemistry
Volume 2014, Article ID 274165, 11 pages
Research Article

Optical Properties of Al- and Zr-Doped Rutile Single Crystals Grown by Tilting-Mirror-Type Floating Zone Method and Study of Structure-Property Relationships by First Principle Calculations

1Center for Crystal Science and Technology, University of Yamanashi, 7-32 Miyamae, Kofu, Yamanashi 400-8511, Japan
2Department of Physics, Rajshahi University, Rajshahi 6205, Bangladesh

Received 25 May 2014; Accepted 12 July 2014; Published 17 August 2014

Academic Editor: Emmanuel Guillon

Copyright © 2014 Md. Abdur Razzaque Sarker. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


High quality and transparent single crystals of undoped rutile TiO2, Al-doped rutile (Al : TiO2), and Zr-doped rutile (Zr : TiO2) have been grown successfully by tilting-mirror-type floating zone (TMFZ) using travelling solvent floating (TSFZ) technique. The effect of doping on the electronic and optical properties of rutile has been studied experimentally as well as by simulation calculations. The effect of doping on the quality of crystals was also investigated by observing optical micrograph and measuring etch pits density that reveals the presence of defects. Undoped rutile crystals were dark blue and comprised many low-angle grain boundaries. Al+3 and Zr+4 ions pin down the migration of dislocations during the cooling and create oxygen vacancies. Doping of the impurities would improve the electronic and optical properties of rutile. The elastic properties might be changed for doping of the impurities in the rutile crystals.