Table of Contents
Journal of Industrial Engineering
Volume 2013, Article ID 625638, 12 pages
Research Article

Optimizing Industrial Robots for Accurate High-Speed Applications

Institute for Robotics, Johannes Kepler University, Altenbergerstraße 69, 4040 Linz, Austria

Received 26 September 2012; Revised 14 December 2012; Accepted 13 January 2013

Academic Editor: Aydin Nassehi

Copyright © 2013 Hubert Gattringer et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Riepl and H. Gattringer, “Accurate high-speed robotics [Dissertation],” Johannes Kepler University, B&R Industrial Ethernet Award, 2009. View at Google Scholar
  2. W. Khalil and E. Dombre, Modeling, Identification and Control of Robots, Kogan Page Science, London, UK, 2004.
  3. B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Modelling, Planning and Control, Advanced Textbooks in Control and Signal Processing Series, Springer, London, UK, 2009, Edited by A. J. J. Grimble.
  4. H. Bremer, Elastic Multibody Dynamics: A Direct Ritz Approach, Springer, New York, NY, USA, 2008.
  5. A. Isidori, Nonlinear Control Systems, Springer, New York, NY, USA, 1985.
  6. A. Kugi, “Introduction to tracking control of finite- and infinite-dimensional systems,” Stability, Identification and Control in Nonlinear Structural Dynamics (SICON), 2008.
  7. H. Gattringer and H. Bremer, “A penalty shooting walking machine,” in IUTAM Symposium on Vibration Control of NonlInear Mechanisms and Structures, H. Ulbrich and W. G. Günthner, Eds., Springer, 2005. View at Google Scholar
  8. ISO NORM 9283, “Manipulating industrial robots—performance and criteria,” Norm, EN ISO, 9283, 1998.
  9. C. H. Menq, J. H. Borm, and J. Z. Lai, “Identification and observability measure of a basis set of error parameters in robot calibration,” Journal of Mechanisms, Transmissions, and Automation in Design, vol. 111, no. 4, pp. 513–518, 1989. View at Google Scholar · View at Scopus
  10. M. R. Driels and U. S. Pathre, “Significance of observation strategy on the design of robot calibration experiments,” Journal of Robotic Systems, vol. 7, no. 2, pp. 197–223, 1990. View at Publisher · View at Google Scholar
  11. Y. Sun and J. M. Hollerbach, “Observability index selection for robot calibration,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '08), pp. 831–836, May 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Sun and J. M. Hollerbach, “Active robot calibration algorithm,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '08), pp. 1276–1281, May 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Gattringer, Starr-Elastische Robotersysteme: Theorie und Anwendungen, Springer, Berlin, Germany, 2011.
  14. J. Swevers, C. Ganseman, J. De Schutter, and H. Van Brussel, “Experimental robot identification using optimised periodic trajectories,” Mechanical Systems and Signal Processing, vol. 10, no. 5, pp. 561–577, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Kostić, B. de Jager, M. Steinbuch, and R. Hensen, “Modeling and identification for high-performance robot control: an RRR-robotic arm case study,” IEEE Transactions on Control Systems Technology, vol. 12, no. 6, pp. 904–919, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Johanni, Optimale Bahnplanung bei Industrierobotern, Technische Universität München, München, Germany, 1988.
  17. R. Riepl and H. Gattringer, “An approach to optimal motion planning for robotic applications,” in Proceedings of the 9th International Conference on Motion and Vibration Control, 2008.
  18. D. Leineweber, I. Bauer, A. Schäfer, H. Bock, and J. Schlöder, “An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization (Parts I and II),” Computers and Chemical Engineering, vol. 27, pp. 157–174, 2003. View at Google Scholar
  19. J. Nocedal and S. J. Wright, Numerical Optimization, Springer Science+Business Media, LLC, New York, NY, USA, 2nd edition, 2006.
  20. J. T. Betts, Practical Methods for Optimal Control Using Nonlinear Programming, Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA, 2001.
  21. M. Diehl, D. B. Leineweber, and A. Schäfer, MUSCOD-II Users’ Manual, Universität Heidelberg, Heidelberg, Germany, 2001.