Table of Contents
Journal of Metallurgy
Volume 2011 (2011), Article ID 954170, 8 pages
http://dx.doi.org/10.1155/2011/954170
Research Article

Cohesive Relations for Surface Atoms in the Iron-Technetium Binary System

Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA

Received 6 June 2011; Accepted 8 August 2011

Academic Editor: Livio Battezzati

Copyright © 2011 Christopher D. Taylor. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. L. Ebert, J. Cunnane, M. Williamson et al., “FY 2010 status report: developing an iron-based alloy waste form,” in Fuel Cycle Research and Development, Argonne National Laboratory, Chicago, Ill, USA, 2010. View at Google Scholar
  2. N. Contributors, “Chart of nuclides,” in National Nuclear Data Center, A. A. Sonzogni, Ed., Brookhaven National Laboratory, New York, NY, USA, 2008. View at Google Scholar
  3. D. Kolman, G. D. Jarvinen, C. D. Taylor et al., “Corrosion and passivity behavior of technetium waste forms,” in Corrosion, National Association of Corrosion Engineers, Houston, Tex, USA, 2011. View at Google Scholar
  4. R. B. Rebak, “Material corrosion issues for nuclear waste disposition in Yucca mountain,” Journal of Management, vol. 60, no. 1, pp. 40–43, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Shoesmith, “Fuel corrosion processes under waste disposal conditions,” Journal of Nuclear Materials, vol. 282, no. 1, pp. 1–31, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Landolt, “Introduction to surface reactions: electrochemical basis of corrosion,” in Corrosion Mechanisms in Theory and Practice, P. Marcus, Ed., pp. 1–18, Marcel Dekker, New York, NY, USA, 2002. View at Google Scholar
  7. P. F. Weck, E. Kim, F. Poineau, and K. R. Czerwinski, “Structural evolution and properties of subnanometer Tcn (n=215) clusters,” Physical Chemistry Chemical Physics, vol. 11, no. 43, pp. 10003–10008, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Poineau, T. Hartmann, P. F. Weck et al., “Structural studies of technetium-zirconium alloys by X-ray diffraction, high-resolution electron microscopy, and first-principles calculations,” Inorganic Chemistry, vol. 49, no. 4, pp. 1433–1438, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. C. D. Taylor, “Surface segregation and adsorption effects of iron-technetium alloys from first-principles,” Journal of Nuclear Materials, vol. 408, no. 2, pp. 183–187, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. M. I. Baskes and R. A. Johnson, “Modified embedded atom potentials for HCP metals,” Modelling and Simulation in Materials Science and Engineering, vol. 2, no. 1, article 011, pp. 147–163, 1994. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Physical Review, vol. 140, no. 4, pp. A1133–A1138, 1965. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Physical Review, vol. 136, no. 3, pp. B864–B871, 1964. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Physical Review B, vol. 59, no. 3, pp. 1758–1775, 1999. View at Google Scholar · View at Scopus
  14. G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Physical Review B, vol. 47, no. 1, pp. 558–561, 1993. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Vitos, Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications, Springer-Verlag, London, UK, 2007.
  16. J. B. Darby, D. J. Lam, L. J. Norton, and J. W. Downey, “Intermediate phases in binary systems of technetium-99 with several transition elements,” Journal of The Less-Common Metals, vol. 4, no. 6, pp. 558–563, 1962. View at Google Scholar · View at Scopus
  17. J. P. Perdew, K. Burke, and M. Ernzerhof, “Perdew, Burke, and Ernzerhof reply,” Physical Review Letters, vol. 80, no. 4, pp. 891–891, 1998. View at Publisher · View at Google Scholar
  18. H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Physical Review B, vol. 13, no. 12, pp. 5188–5192, 1976. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Methfessel and A. T. Paxton, “High-precision sampling for Brillouin-zone integration in metals,” Physical Review B, vol. 40, no. 6, pp. 3616–3621, 1989. View at Publisher · View at Google Scholar · View at Scopus
  20. B.-J. Lee and M. I. Baskes, “Second nearest-neighbor modified embedded-atom-method potential,” Physical Review B, vol. 62, no. 13, pp. 8564–8567, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” Journal of Computational Physics, vol. 117, no. 1, pp. 1–19, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. D. M. Artymowicz, J. Erlebacher, and R. C. Newman, “Relationship between the parting limit for de-alloying and a particular geometric high-density site percolation threshold,” Philosophical Magazine, vol. 89, no. 21, pp. 1663–1693, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Erlebacher, “An atomistic description of dealloying porosity evolution, the critical potential, and rate-limiting behavior,” Journal of the Electrochemical Society, vol. 151, no. 10, pp. C614–C626, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. R. S. Lillard, G. F. Wang, and M. I. Baskes, “The role of metallic bonding in the cristallographic pitting of magnesium,” Journal of the Electrochemical Society, vol. 153, no. 9, pp. B358–B364, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. G. R. Love, C. C. Koch, H. L. Whaley, and Z. R. McNutt, “Elastic moduli and Debye temperature of polycrystalline technetium by ultrasonic velocity measurements,” Journal of The Less-Common Metals, vol. 20, no. 1, pp. 73–75, 1970. View at Google Scholar · View at Scopus
  26. A. F. Guillermet and G. Grimvall, “Thermodynamic properties of technetium,” Journal of The Less-Common Metals, vol. 147, no. 2, pp. 195–211, 1989. View at Google Scholar · View at Scopus
  27. H. Okamoto, Binary Alloy Phase Diagrams, ASM International, Russell Township, Ohio, USA, 2nd edition, 1990.
  28. V. L. Moruzzi, J. F. Janak, and A. R. Williams, Calculated Electronic Properties of Metals, Pergamon Press, New York, NY, USA, 1978.
  29. J. G. Darab and P. A. Smith, “Chemistry of technetium and rhenium species during low-level radioactive waste vitrification,” Chemistry of Materials, vol. 6, no. 5, pp. 1004–1021, 1996. View at Publisher · View at Google Scholar
  30. C. Taylor, M. Neurock, and J. R. Scully, “First-principles investigation of the fundamental corrosion properties of a model Cu38 nanoparticle and the (111), (113) surfaces,” Journal of the Electrochemical Society, vol. 155, no. 8, pp. C407–C414, 2008. View at Publisher · View at Google Scholar · View at Scopus