Table of Contents
Journal of Metallurgy
Volume 2012, Article ID 531915, 9 pages
http://dx.doi.org/10.1155/2012/531915
Research Article

Electrical Properties of Rapidly Annealed Ir and Ir/Au Schottky Contacts on n-Type InGaN

Department of Physics, Sri Venkateswara University, Tirupati 517 502, India

Received 23 August 2011; Accepted 24 October 2011

Academic Editor: Stefano Gialanella

Copyright © 2012 V. Rajagopal Reddy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. X. Li, K. M. Yu, J. Wu et al., “Fermi-level stabilization energy in group III nitrides,” Physical Review B, vol. 71, no. 16, pp. 1–4, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Kim, F. Ren, A. G. Baca, and S. J. Pearton, “Thermal stability of WSix and W Schottky contacts on n-GaN,” Applied Physics Letters, vol. 82, no. 19, pp. 3263–3265, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. V. Rajagopal Reddy, C. K. Ramesh, and K. S. R. Koteswara Rao, “Effect of annealing temperature on electrical characteristics of ruthenium-based Schottky contacts on n-type GaN,” Journal of Materials Science, vol. 17, no. 12, pp. 999–1004, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Rajagopal Reddy and N. Ramesha Reddy, “Influence of thermal annealing temperature on electrical properties of Rh and Rh/Au Schottky contacts to n-type GaN,” Journal of Optoelectronics and Advanced Materials, vol. 9, no. 12, pp. 3871–3876, 2007. View at Google Scholar · View at Scopus
  5. N. Miura, T. Nanjo, M. Suita et al., “Thermal annealing effects on Ni/Au based Schottky contacts on n-GaN and AlGaN/GaN with insertion of high work function metal,” Solid-State Electronics, vol. 48, no. 5, pp. 689–695, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. H. S. Venugopalan and S. E. Mohney, “Thermally stable rhenium Schottky contacts to n-GaN,” Applied Physics Letters, vol. 73, no. 9, pp. 1242–1244, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. J. S. Jang, D. Kim, and T. Y. Seong, “Schottky barrier characteristics of Pt contacts to n-type InGaN,” Journal of Applied Physics, vol. 99, no. 7, Article ID 073704, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. J. J. Xue, D. J. Chen, B. Liu et al., “Au/Pt/InGaN/GaN heterostructure schottky prototype solar cell,” Chinese Physics Letters, vol. 26, no. 9, Article ID 098102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. E. H. Rhoderick and T. H. Williams, Metal-Semiconductor Contacts, Oxford Science, Oxford, UK, 1988.
  10. D. T. Quan and H. Hbib, “High barrier height Au/n-type InP Schottky contacts with a POxNyHz interfacial layer,” Solid-State Electronics, vol. 36, no. 3, pp. 339–344, 1993. View at Publisher · View at Google Scholar · View at Scopus
  11. C. R. Crowell, “The Richardson constant for thermionic emission in Schottky barrier diodes,” Solid State Electronics, vol. 8, no. 4, pp. 395–399, 1965. View at Google Scholar · View at Scopus
  12. H. Çetin and E. Ayyildiz, “Electrical characteristics of Au, Al, Cu/n-InP Schottky contacts formed on chemically cleaned and air-exposed n-InP surface,” Physica B, vol. 394, no. 1, pp. 93–99, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. R. T. Tung, “Recent advances in Schottky barrier concepts,” Materials Science and Engineering: R, vol. 35, no. 1–3, pp. 1–13, 2001. View at Google Scholar
  14. L. Messick, “A D.C. to 16 GHz indium phosphide MISFET,” Solid State Electronics, vol. 23, no. 6, pp. 551–555, 1980. View at Google Scholar · View at Scopus
  15. S. K. Cheung and N. W. Cheung, “Extraction of Schottky diode parameters from forward current-voltage characteristics,” Applied Physics Letters, vol. 49, no. 2, pp. 85–87, 1986. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Norde, “A modified forward I-V plot for Schottky diodes with high series resistance,” Journal of Applied Physics, vol. 50, no. 7, pp. 5052–5053, 1979. View at Publisher · View at Google Scholar · View at Scopus
  17. J. S. Jang, S. J. Park, and T. Y. Seong, “Formation of low resistance Pt ohmic contacts to p-type GaN using two-step surface treatment,” Journal of Vacuum Science and Technology B, vol. 17, no. 6, pp. 2667–2670, 1999. View at Google Scholar · View at Scopus
  18. S. Yuunping, X. M. Shen, J. Wang et al., “Thermal annealing behaviour of Ni/Au on n-GaN Schottky contacts,” Journal of Physics D, vol. 35, no. 20, pp. 2648–2651, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. W. E. Spicer, I. Lindau, P. Skeath, C. Y. Su, and P. Chye, “Unified mechanism for schottky-barrier formation and III-V oxide interface states,” Physical Review Letters, vol. 44, no. 6, pp. 420–423, 1980. View at Publisher · View at Google Scholar · View at Scopus
  20. R. H. Williams, V. Montgomery, and R. R. Varma, “Chemical effects in Schottky barrier formation,” Journal of Physics C, vol. 11, no. 17, pp. L735–L738, 1978. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Y. Duboz, F. Binet, N. Laurent et al., “Influence of surface defects on the characteristics of GaN Schottky diodes,” Material Research Society Symposium Proceedings, vol. 449, pp. 1085–1090, 2009. View at Google Scholar · View at Scopus
  22. V. Rajagopal Reddy, M. Ravinandan, P. Koteswara Rao, and C. J. Choi, “Effects of thermal annealing on the electrical and structural properties of Pt/Mo Schottky contacts on n-type GaN,” Journal of Materials Science, vol. 20, no. 10, pp. 1018–1025, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. J. H. Werner and H. H. Güttler, “Barrier inhomogeneities at Schottky contacts,” Journal of Applied Physics, vol. 69, no. 3, pp. 1522–1533, 1991. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Fontaine, T. Okumura, and K. N. Tu, “Interfacial reaction and Schottky barrier between Pt and GaAs,” Journal of Applied Physics, vol. 54, no. 3, pp. 1404–1412, 1983. View at Publisher · View at Google Scholar · View at Scopus
  25. H. C. Card and E. H. Rhoderick, “Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes,” Journal of Physics D, vol. 4, no. 10, pp. 1589–1601, 1971. View at Publisher · View at Google Scholar · View at Scopus
  26. O. Güllü and A. Türüt, “Electrical analysis of organic interlayer based metal/interlayer/ semiconductor diode structures,” Journal of Applied Physics, vol. 106, no. 10, Article ID 103717, 2009. View at Publisher · View at Google Scholar
  27. A. Singh, K. C. Reinhardt, and W. A. Anderson, “Temperature dependence of the electrical characteristics of Yb/p-InP tunnel metal-insulator-semiconductor junctions,” Journal of Applied Physics, vol. 68, no. 7, pp. 3475–3483, 1990. View at Publisher · View at Google Scholar · View at Scopus
  28. M. K. Hudait and S. B. Krupanidhi, “Interface states density distribution in Au/n-GaAs Schottky diodes on n-Ge and n-GaAs substrates,” Materials Science and Engineering B, vol. 87, no. 2, pp. 141–147, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Turut, M. Saglam, H. Efeoglu, N. Yalcin, M. Yildirim, and B. Abay, “Interpreting the nonideal reverse bias C-V characteristics and importance of the dependence of Schottky barrier height on applied voltage,” Physica B, vol. 205, no. 1, pp. 41–50, 1995. View at Google Scholar · View at Scopus
  30. S. M. Sze, Physics of Semiconductor Structures, John Wiley & Sons, New York, NY, USA, 2nd edition, 1981.
  31. S. Karatas, S. Altindal, and M. Cakar, “Current transport in Zn/p-Si(1 0 0) Schottky barrier diodes at high temperatures,” Physica B, vol. 357, no. 3-4, pp. 386–397, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Karatas and A. Turut, “The determination of electronic and interface state density distributions of Au/n-type GaAs Schottky barrier diodes,” Physica B, vol. 381, no. 1-2, pp. 199–203, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Turut and M. Saglam, “Determination of the density of Si-metal interface states and excess capacitance caused by them,” Physica B, vol. 179, no. 4, pp. 285–294, 1992. View at Google Scholar · View at Scopus