Table of Contents
Journal of Metallurgy
Volume 2012 (2012), Article ID 723687, 13 pages
http://dx.doi.org/10.1155/2012/723687
Research Article

Effect of Diacetyl Monoxime Thiosemicarbazone on the Corrosion of Aged 18 Ni 250 Grade Maraging Steel in Sulphuric Acid Solution

1Department of Science and Humanities, PESIT, Bangalore 560085, India
2Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal, Srinivasnagar, Karnataka 75025, India
3Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Srinivasnagar, Karnataka 575025, India

Received 31 July 2012; Accepted 6 November 2012

Academic Editor: Sunghak Lee

Copyright © 2012 T. Poornima et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Y. Sastry, R. Narayanan, C. R. Shamantha et al., “Stress corrosion cracking of maraging steel weldments,” Materials Science and Technology, vol. 19, no. 3, pp. 375–381, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Rohrbach and M. Schmidt, Properties and Selection: Irons, Steels, and High-Performance Alloys, vol. 1 of ASM Handbook, 10th edition, 1990.
  3. W. W. Kirk, R. A. Covert, and T. P. May, “Corrosion behaviour of high-strength steels in marine environment,” Metals Engineering Quarterly, vol. 8, pp. 31–38, 1968. View at Google Scholar
  4. S. W. Dean and H. R. Copson, “Stress corrosion behaviour of maraging steel in natural environments,” Corrosion, vol. 21, pp. 95–103, 1965. View at Google Scholar
  5. Data bulletin on 18%Ni maraging steel. The International Nickel Company, INC, 1964.
  6. J. Rezek, I. E. Klein, and J. Yhalom, “Electrochemical properties of protective coatings on maraging steel,” Corrosion Science, vol. 39, pp. 385–397, 1997. View at Google Scholar
  7. P. P. Sinha, “Design and development of new variety of 250 grade stainless steel maraging steel,” Transactions of The IIM, vol. 35, article 2, 1982. View at Google Scholar
  8. T. Poornima, N. Jagannatha, and A. Nityananda Shetty, “Studies on corrosion of annealed and aged 18 Ni 250 grade maraging steel in sulphuric acid medium,” Portugaliae Electrochimica Acta, vol. 28, no. 3, pp. 173–188, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Poornima, J. Nayak, and A. Nityananda Shetty, “3,4-Dimethoxybenzaldehydethiosemicarbazone as corrosion inhibitor for aged 18 Ni 250 grade maraging steel in 0.5 M sulfuric acid,” Journal of Applied Electrochemistry, vol. 41, no. 2, pp. 223–233, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Bentiss, M. Lebrini, and M. Lagrenee, “Thermodynamic characterizationof metal dissolution and inhibitor adsorption processes in mild steel/2. 5-bis(n-thienyl)-1. 3. 4-thiadiazoles/hydrochloric acidsystem,” Corrosion Science, vol. 47, pp. 2915–2931, 2005. View at Google Scholar
  11. M. Lebrini, F. Bentiss, H. Vezin, and M. Lagrenée, “The inhibition of mild steel corrosion in acidic solutions by 2,5-bis(4-pyridyl)-1,3,4-thiadiazole: structure-activity correlation,” Corrosion Science, vol. 48, no. 5, pp. 1279–1291, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Lowmunkhong, D. Ungthararak, and P. Sutthivaiyakit, “Tryptamine as a corrosion inhibitor of mild steel in hydrochloric acid solution,” Corrosion Science, vol. 52, no. 1, pp. 30–36, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Sankarapapavinasam, F. Pushpanaden, and M. F. Ahmed, “Piperidine, piperidones and tetrahydrothiopyrones as inhibitors for the corrosion of copper in H2SO4,” Corrosion Science, vol. 32, no. 2, pp. 193–203, 1991. View at Google Scholar · View at Scopus
  14. G. Schmitt, “Application of inhibitors for acid media. Report Prepared for the European Federation of Corrosion Working Party on Inhibitors,” British Corrosion Journal, vol. 19, pp. 165–176, 1984. View at Google Scholar
  15. S. Singh, F. Athar, and A. Azam, “Synthesis, spectral studies and in vitro assessment for antiamoebic activity of new cyclooctadiene ruthenium(ii) complexes with 5-nitrothiophene-2-carboxaldehyde thiosemicarbazones,” Bioorganic and Medicinal Chemistry Letters, vol. 15, pp. 5424–5428, 2005. View at Google Scholar
  16. B. O. Renata, M. S. F. Elaine, P. P. S. Rodrigo, A. A. Anderson, U. K. Antoniana, and L. Z. Carlos, “Synthesis and antimalarial activity of semicarbazone and thiosemicarbazone derivatives,” European Journal of Medicinal Chemistry, vol. 43, p. 1984, 2008. View at Google Scholar
  17. J. Easmon, G. Heinisch, W. Holzer, and B. Rosenwirth, “Novel thiosemicarbazones derived from formyl- and acyldiazines: synthesis, effects on cell proliferation, and synergism with antiviral agents,” Journal of Medicinal Chemistry, vol. 35, no. 17, pp. 3288–3296, 1992. View at Google Scholar · View at Scopus
  18. O. Efanga Offiong and S. Martelli, “Antifungal and antibacterial activity of 2-acetylpyridine-(4-phenylthiosemicarbazone) and its metal (II) complexes,” Farmaco, vol. 47, no. 12, pp. 1543–1554, 1992. View at Google Scholar · View at Scopus
  19. O. E. Offiong and S. Martelli, “Synthesis, antibacterial and antifungal activity of metal (II) complexes of 2-acetylpyridine thiosemicarbazones,” Farmaco, vol. 48, no. 6, pp. 777–793, 1993. View at Google Scholar · View at Scopus
  20. S. T. Arab, “Inhibition action of thiosemicabazone and some of it is ρ-substituted compounds on the corrosion of iron-base metallic glass alloy in 0.5 M H2SO4 at 30°C,” Materials Research Bulletin, vol. 43, pp. 510–521, 2008. View at Google Scholar
  21. B. A. Abd El-Nabey, E. Khamis, G. E. Thompson, and J. L. Dawson, “Effect of temperature on the inhibition of the acid corrosion of steel by benzaldehyde thiosemicarbazone: impedance measurements,” Surface and Coatings Technology, vol. 28, no. 1, pp. 83–91, 1986. View at Google Scholar · View at Scopus
  22. E. E. Ebenso, U. J. Ekpe, B. I. Ita, O. E. Offiong, and U. J. Ibok, “Effect of molecular structure on the efficiency of amides and thiosemicarbazones used for corrosion inhibition of mild steel in hydrochloric acid,” Materials Chemistry and Physics, vol. 60, no. 1, pp. 79–90, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Stanly Jacob and G. Parameswaran, “Corrosion inhibition of mild steel in hydrochloric acid solution by Schiff base furoin thiosemicarbazone,” Corrosion Science, vol. 52, no. 1, pp. 224–228, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Riose and M. Valcarcel, “Homogeneous precipitation of palladium dimethylglyoximate by interchange reactions of C=N groups,” Analyst, vol. 107, pp. 737–743, 1982. View at Google Scholar
  25. M. G. Fontana, Corrosion Engineering, McGraw-Hill, Singapore, 3rd edition, 1987.
  26. W. H. Li, Q. He, S. T. Zhang, C. L. Pei, and B. R. Hou, “Some new triazole derivatives as inhibitors for mild steel corrosion in acidic medium,” Journal of Applied Electrochemistry, vol. 38, no. 3, pp. 289–295, 2008. View at Google Scholar
  27. C. Cao, “On electrochemical techniques for interface inhibitor research,” vol. 38, no. 12, pp. 2073–2082, 1996. View at Google Scholar
  28. A. R. El-Sayed, A. M. Shaker, and H. M. Abd El-Lateef, “Corrosion inhibition of tin, indium and tin-indium alloys by adenine or adenosine in hydrochloric acid solution,” Corrosion Science, vol. 52, no. 1, pp. 72–81, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. S. S. Abd El-Rehim, H. H. Hassan, and M. A. Amin, “Corrosion inhibition study of pure Al and some of its alloys in 1.0 M HCl solution by impedance technique,” Corrosion Science, vol. 46, pp. 5–25, 2004. View at Google Scholar
  30. W. Li, Q. He, C. Pei, and B. Hou, “Experimental and theoretical investigation of the adsorption behaviour of new triazole derivatives as inhibitors for mild steel corrosion in acid media,” Electrochimica Acta, vol. 52, pp. 6386–6394, 2007. View at Google Scholar
  31. W. J. Lorenz and F. Mansfeld, “Determination of corrosion rates by electrochemical DC and AC methods,” Corrosion Science, vol. 21, pp. 647–672, 1982. View at Google Scholar
  32. A. A. Aksut, W. J. Lorenz, and F. Mansfeld, “The determination of corrosion rates by electrochemical d.c. and a.c. methods—2. Systems with discontinuous steady state polarization behavior,” Corrosion Science, vol. 22, pp. 611–619, 1982. View at Google Scholar
  33. Q. Qu, Z. Hao, L. Li, W. Bai, Y. Liu, and Z. Ding, “Synthesis and evaluation of Tris-hydroxymethyl-(2-hydroxybenzylidenamino)-methane as a corrosion inhibitor for cold rolled steel in hydrochloric acid,” Corrosion Science, vol. 51, no. 3, pp. 569–574, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Quartarone, L. Ronchin, A. Vavasori, C. Tortato, and L. Bonaldo, “Inhibitive action of gramine towards corrosion of mild steel in deaerated 1.0 M hydrochloric acid solutions,” Corrosion Science, vol. 64, pp. 82–89, 2012. View at Google Scholar
  35. I. Ahamad, R. Prasad, and M. A. Quraishi, “Adsorption and inhibitive properties of some new Mannich bases of Isatin derivatives on corrosion of mild steel in acidic media,” Corrosion Science, vol. 52, no. 4, pp. 1472–1481, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. M. A. Veloz and I. Gonzalez, “Electrochemical study of carbon steel corrosion in buffered acetic acid solutions with chlorides and H2S,” Electrochimica Acta, vol. 48, pp. 135–144, 2002. View at Google Scholar
  37. E. M. Sherif and S. M. Park, “Effects of 1, 4-naphthoquinone on aluminum corrosion in 0.50 M sodium chloride solutions,” Electrochimica Acta, vol. 51, pp. 1313–1321, 2006. View at Google Scholar
  38. A. Popova, E. Sokolova, S. Raicheva, and M. Christov, “AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives,” Corrosion Science, vol. 45, no. 1, pp. 33–58, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy Theory, Experiment, and Applications, John Wiley & Sons, 2nd edition, 2005.
  40. A. El-Sayed, “Phenothiazine as inhibitor of the corrosion of cadmium in acidic solutions,” Journal of Applied Electrochemistry, vol. 27, pp. 193–200, 1997. View at Google Scholar
  41. A. Popova, M. Christov, and A. Vasilev, “Mono- and dicationic benzothiazolic quaternary ammonium bromides as mild steel corrosion inhibitors—part 2: electrochemical impedance and polarisation resistance results,” Corrosion Science, vol. 53, no. 5, pp. 1770–1777, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. B. Seshu, A. K. Bhatnagar, A. Venugopal, and V. S. Raja, “Electrochemical corrosion behaviours of Fe68Ni14-xMoxSi2B16 metallic glasses in 1N HCl and 1N H2SO4,” Journal of Materials Science, vol. 32, pp. 2071–2075, 1997. View at Google Scholar
  43. S. T. Arab and K. M. Emran, “Structure effect of some thiosemicarbazone derivatives on the corrosion inhibition of Fe78B13Si9 glassy alloy in Na2SO4 solution,” Materials Letters, vol. 62, no. 6-7, pp. 1022–1032, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. H. Ashassi-Sorkabi, T. A. Aliyev, S. Nasiri, and R. Zarepoor, Electrochimica Acta, vol. 52, p. 5240, 2007.
  45. M. A. Amin, K. F. Khaled, and S. A. Fadl-Allah, “Testing validity of the Tafel extrapolation method for monitoring corrosion of cold rolled steel in HCl solutions—experimental and theoretical studies,” Corrosion Science, vol. 52, no. 1, pp. 140–151, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. H. H. Hassan, E. Abdelghani, and M. A. Amin, “Inhibition of mild steel corrosion in hydrochloric acid solution by triazole derivatives—part I. Polarization and EIS studies,” Electrochimica Acta, vol. 52, pp. 6359–6364, 2007. View at Google Scholar
  47. C. H. Hsu and F. Mansfeld, “Concernng the conversion of the constant phase element parameter Y0 into a capacitance,” Corrosion, vol. 57, no. 9, pp. 747–748, 2001. View at Google Scholar · View at Scopus
  48. E. McCafferty and N. Hackerman, “Double layer capacitance of iron and corrosion inhibition with polymethylene diamines,” Journal of The Electrochemical Society, vol. 119, pp. 146–154, 1972. View at Google Scholar
  49. F. Bentiss, M. Traisnel, and M. Lagrenee, “The substituted 1,3,4-oxadiazoles: a new class of corrosion inhibitors of mild steel in acidic media,” Corrosion Science, vol. 42, no. 1, pp. 127–146, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Larabi, Y. Harek, O. Benali, and S. Ghalem, “Hydrazide derivatives as corrosion inhibitors for mild steel in 1 M HCl,” Progress in Organic Coatings, vol. 54, p. 261, 2005. View at Google Scholar
  51. M. Schorr and J. Yahalom, “The significance of the energy of activation for the dissolution reaction of metal in acids,” Corrosion Science, vol. 12, no. 11, pp. 867–868, 1972. View at Google Scholar · View at Scopus
  52. M. M. Solomon, S. A. Umoren, I. I. Udosoro, and A. P. Udoh, “Inhibitive and adsorption behaviour of carboxymethyl cellulose on mild steel corrosion in sulphuric acid solution,” Corrosion Science, vol. 52, no. 4, pp. 1317–1325, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. L. Antropov, “A correlation between kinetics of corrosion and the mechanism of inhibition by organic compounds,” Corrosion Science, vol. 7, pp. 607–620, 1967. View at Google Scholar
  54. E. F. E. Sherbini, “Effect of some ethoxylated fatty acids on the corrosion behaviour of mild steel in sulphuric acid solution,” Materials Chemistry and Physics, vol. 60, pp. 286–290, 1999. View at Google Scholar
  55. T. Szauer and A. Brand, “On the role of fatty acid in adsorption and corrosion inhibition of iron by amine-fatty acid salts in acidic solution,” Electrochimica Acta, vol. 26, pp. 1257–1260, 1981. View at Google Scholar
  56. M. K. Gomma and M. H. Wahdan, “Schiff bases as corrosion inhibitors for aluminium in hydrochloric acid solution,” Materials Chemistry and Physics, vol. 39, pp. 209–213, 1995. View at Google Scholar
  57. J. Marsh, Advanced Organic Chemistry, Wiley Eastern, New Delhi, India, 3rd edition, 1988.
  58. M. Sahin, S. Bilgic, and H. Yilmaz, “The inhibition effects of some cyclic nitrogen compounds on the corrosion of the steel in NaCl mediums,” Applied Surface Science, vol. 195, pp. 1–7, 2002. View at Google Scholar
  59. B. Ateya, B. E. El-Anadouli, and F. M. El-Nizamy, “The adsorption of thiourea on mild steel,” Corrosion Science, vol. 24, pp. 509–515, 1984. View at Google Scholar
  60. E. E. Oguzie, V. O. Njoku, C. K. Enenebeaku, C. O. Akalezi, and C. Obi, “Effect of hexamethylpararosaniline chloride (crystal violet) on mild steel corrosion in acidic media,” Corrosion Science, vol. 50, no. 12, pp. 3480–3486, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Hosseini, S. F. L. Mertens, and M. R. Arshadi , “Synergism and antagonism in mild steel corrosion inhibition by sodium dodecylbenzenesulphonate and hexamethylenetetramine,” Corrosion Science, vol. 45, no. 7, pp. 1473–1489.
  62. A. K. Singh and M. A. Quraishi, “Effect of Cefazolin on the corrosion of mild steel in HCl solution,” Corrosion Science, vol. 52, pp. 152–160, 2010. View at Google Scholar
  63. W. Durnie, R. De Marco, A. Jefferson, and B. Kinsella, “Development of a structure-activity relationship for oil field corrosion inhibitors,” Journal of the Electrochemical Society, vol. 146, no. 5, pp. 1751–1756, 1999. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Martinez and I. Stern, “Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in the low carbon steel/mimosa tannin/sulfuric acid system,” Applied Surface Science, vol. 199, pp. 83–89, 2002. View at Google Scholar
  65. J. O. M. Bockris, M. A. Devanathan, and K. Muller, “Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in the low carbon steel/mimosa tannin/sulfuric acid system,” Proceedings of the Royal Society A, vol. 274, pp. 55–79, 1963. View at Google Scholar
  66. M. A. V. Devanathan and Z. Stachurski, “The mechanism of hydrogen evolution on iron in acid solutions by determination of permeation rates,” Journal of The Electrochemical Society, vol. 111, p. 619, 1964. View at Google Scholar
  67. E. J. Kelly, “Iron dissolution and hydrogen evolution reactions in acidic sulfate solutions,” Journal of The Electrochemical Society, vol. 112, pp. 124–131, 1965. View at Google Scholar
  68. A. Frignani, M. Tassinari, and G. Trabanelli, “Impedance measurements on Armco iron in acid solution inhibited by S-containing additives,” Electrochimica Acta, vol. 34, no. 8, pp. 1259–1263, 1989. View at Google Scholar · View at Scopus
  69. E. McCafferty and N. Hackerman, “Kinetics of iron corrosion in concentrated acidic chloride solutions,” Journal of The Electrochemical Society, vol. 119, pp. 999–1009, 1972. View at Google Scholar
  70. H. Ashassi-Sorkhabi and S. A. Nabavi-Amri, “Corrosion inhibition of carbon steel in petroleum/water mixtures by N-containing compounds,” Acta Chimica Slovenica, vol. 47, no. 4, pp. 507–517, 2000. View at Google Scholar · View at Scopus
  71. P. C. Okafor, M. E. Ikpi, I. E. Uwah, E. E. Ebenso, U. J. Ekpe, and S. A. Umoren, “Inhibitory action of Phyllanthus amarus extracts on the corrosion of mild steel in acidic media,” Corrosion Science, vol. 50, no. 8, pp. 2310–2317, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. I. B. Obot and N. O. Obi-Egbedi, “Adsorption properties and inhibition of mild steel corrosion in sulphuric acid solution by ketoconazole: experimental and theoretical investigation,” Corrosion Science, vol. 52, no. 1, pp. 198–204, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. D. W. Shoesmith, Metals Handbook, vol. 13, 9th edition, 1987.
  74. A. Fragnani and G. Trabanelli, “Influence of organic additives on the corrosion of iron-based amorphous alloys in dilute sulfuric acid solution,” Corrosion, vol. 55, pp. 653–660, 1999. View at Google Scholar
  75. A. Popova, E. Sokolova, S. Raicheva, and M. Christov, “AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives,” Corrosion Science, vol. 45, no. 1, pp. 33–58, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. N. Hackerman, E. S. Snavely Jr., and J. S. Payne Jr., “Effects of anions on corrosion inhibition by organic compounds,” Journal of The Electrochemical Society, vol. 113, pp. 677–981, 1966. View at Google Scholar
  77. X. Li, S. Deng, H. Fu, and G. Mu, “Inhibition effect of 6-benzylaminopurine on the corrosion of cold rolled steel in H2SO4 solution,” Corrosion Science, vol. 51, no. 3, pp. 620–634, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. A. K. Satpati and P. V. Ravindran, “Electrochemical study of the inhibition of corrosion of stainless steel by 1,2,3-benzotriazole in acidic media,” Materials Chemistry and Physics, vol. 109, pp. 352–359, 2008. View at Google Scholar