Table of Contents
Journal of Metallurgy
Volume 2013 (2013), Article ID 256403, 14 pages
http://dx.doi.org/10.1155/2013/256403
Research Article

Inhibition Effect of Substituted Thiadiazoles on Corrosion Activity of N80 Steel in HCl Solution

Department of Applied Chemistry, Indian School of Mines, Dhanbad 826004, India

Received 29 November 2012; Revised 2 March 2013; Accepted 18 March 2013

Academic Editor: Elena V. Pereloma

Copyright © 2013 M. Yadav et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Ahamad and M. A. Quraishi, “Bis (benzimidazol-2-yl) disulphide: an efficient water soluble inhibitor for corrosion of mild steel in acid media,” Corrosion Science, vol. 51, no. 9, pp. 2006–2013, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. Q. B. Zhang and Y. X. Hua, “Corrosion inhibition of mild steel by alkylimidazolium ionic liquids in hydrochloric acid,” Electrochimica Acta, vol. 54, no. 6, pp. 1881–1887, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. W. Li, Q. He, C. Pei, and B. Hou, “Experimental and theoretical investigation of the adsorption behaviour of new triazole derivatives as inhibitors for mild steel corrosion in acid media,” Electrochimica Acta, vol. 52, no. 22, pp. 6386–6394, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Solmaz, G. Kardas, B. Yazıcı, and M. Erbil, “Inhibition effect of rhodanine for corrosion of mild steel in hydrochloric acid solution,” Protection of Metals, vol. 41, no. 6, pp. 581–585, 2005. View at Google Scholar
  5. G. Kardas, “The inhibition effect of 2-thiobarbituric acid on the corrosion performance of mild steel in HCl solution,” Fiziko-Khimicheskaya Mekhanika Materialov, vol. 41, no. 3, pp. 337–343, 2005. View at Google Scholar · View at Scopus
  6. M. Yadav, D. Behera, and U. Sharma, “Development of corrosion inhibitors used in acidization of petroleum oil well,” Der Chemica Sinica, vol. 3, pp. 262–268, 2012. View at Google Scholar
  7. M. Yadav, D. Behera, and U. Sharma, “Nontoxic corrosion inhibitors for N80 steel in hydrochloric acid,” Arabian Journal of Chemistry, 2012. View at Publisher · View at Google Scholar
  8. M. A. Amin, S. S. Abd El-Rehim, E. E. F. El-Sherbini, and R. S. Bayoumi, “The inhibition of low carbon steel corrosion in hydrochloric acid solutions by succinic acid. Part I. Weight loss, polarization, EIS, PZC, EDX and SEM studies,” Electrochimica Acta, vol. 52, no. 11, pp. 3588–3600, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. S. T. Selvi, V. Raman, and N. Rajendran, “Corrosion inhibition of mild steel by benzotriazole derivatives in acidic medium,” Journal of Applied Electrochemistry, vol. 33, no. 12, pp. 1175–1182, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Bentiss, M. Lebrini, H. Vezin, and M. Lagrenée, “Experimental and theoretical study of 3-pyridyl-substituted 1,2,4-thiadiazole and 1,3,4-thiadiazole as corrosion inhibitors of mild steel in acidic media,” Materials Chemistry and Physics, vol. 87, no. 1, pp. 18–23, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. S. K. Shukla and E. E. Ebenso, “Effect of condensation product of thiosemicarbazide and phenyl isothiocynate on corrosion of mild steel in sulphuric acid medium,” International Journal of Electrochemcal Science, vol. 7, pp. 12134–12145, 2012. View at Google Scholar
  12. I. A. Ammar and S. Darwish, “Effect of some ions on inhibition of the acid corrosion of fe by thiourea,” Corrosion Science, vol. 7, no. 9, pp. 579–596, 1967. View at Google Scholar · View at Scopus
  13. D. D. N. Singh, M. M. Singh, R. S. Chaudhary, and C. V. Agarwal, “Inhibitive effects of isatin, thiosemicarbazide and isatin-3-(3-thiosemicarbazone) on the corrosion of aluminium alloys in nitric acid,” Journal of Applied Electrochemistry, vol. 10, no. 5, pp. 587–592, 1980. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Trabanelli, G. Brunoro, C. Monticells, and M. Foganolo, in Proceedings of the 9th ICMC, Toronto, Canada, June 1984.
  15. G. D. M. Z. Zhon, R. Tong, and T. Notoxa, Bulletin of the Electrochemical Society, vol. 7, p. 60, 1991.
  16. R. M. Souto, V. Fox, M. M. Laz, M. Pérez, and R. S. González, “Some experiments regarding the corrosion inhibition of copper by benzotriazole and potassium ethyl xanthate,” Journal of Electroanalytical Chemistry, vol. 411, no. 1-2, pp. 161–165, 1996. View at Google Scholar · View at Scopus
  17. E. Otero and J. M. Bastidas, “Cleaning of two hundred year-old copper works of art using citric acid with and without benzotriazole and 2-amino-5-mercapto-1,3,4-thiadiazole,” Materials and Corrosion, vol. 47, no. 3, pp. 133–138, 1996. View at Google Scholar · View at Scopus
  18. S. S. Mahmoud and E. G. A. Malidy, Egyptian Journal of Chemistry, vol. 39, p. 365, 1996.
  19. O. O. Xometl, N. V. Likhanova, N. Nava et al., “Thiadiazoles as corrosion inhibitors for carbon steel in H2SO4 solutions,” International Journal of Electrochemcal Science, vol. 8, pp. 735–752, 2013. View at Google Scholar
  20. X. J. Raj and N. Rajendran, “Corrosion inhibition effect of substituted thiadiazoles on brass,” International Journal of Electrochemical Science, vol. 6, no. 2, pp. 348–366, 2011. View at Google Scholar · View at Scopus
  21. A. Shafiee, E. Naimi, P. Mansobi, A. Foroumadi, and M. Shekari, “Syntheses of substituted-oxazolo-1,3,4-thiadiazoles, 1,3,4-oxadiazoles, and 1,2,4-triazoles,” Journal of Heterocyclic Chemistry, vol. 32, no. 4, pp. 1235–1239, 1995. View at Google Scholar · View at Scopus
  22. N. A. Negm, A. A. Hafiz, and M. Y. El Awady, “Influence of structure of the cationic polytriethanolammonium bromide derivatives. II. Corrosion inhibition,” Egyptian Journal of Chemistry, vol. 48, no. 2, pp. 201–210, 2005. View at Google Scholar · View at Scopus
  23. A. U. Ezeoke, O. G. Adeyemi, O. A. Akerele, and N. O. Obi-Egbedi, “Computational and experimental studies of 4-Aminoantipyrine as corrosion inhibitor for mild steel in sulphuric acid solution,” International Journal of Electrochemical Science, vol. 7, no. 1, pp. 534–553, 2012. View at Google Scholar
  24. E. E. Ebenso and I. B. Obot, “Inhibitive properties, thermodynamic characterization and quantum chemical studies of secnidazole on mild steel corrosion in acidic medium,” International Journal of Electrochemical Science, vol. 5, no. 12, pp. 2012–2035, 2010. View at Google Scholar · View at Scopus
  25. K. Jüttner, “Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces,” Electrochimica Acta, vol. 35, no. 10, pp. 1501–1508, 1990. View at Google Scholar · View at Scopus
  26. I. Dehri and M. Özcan, “The effect of temperature on the corrosion of mild steel in acidic media in the presence of some sulphur-containing organic compounds,” Materials Chemistry and Physics, vol. 98, no. 2-3, pp. 316–323, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Moretti, G. Quartarone, A. Tassan, and A. Zingales, “Pitting corrosion behavior of superferritic stainless steel in waters containing chloride,” Werkstoffe und Korrosion, vol. 44, no. 1, pp. 24–30, 1993. View at Google Scholar · View at Scopus
  28. V. R. Saliyan and A. V. Adhikari, “Inhibition of corrosion of mild steel in acid media by N'-benzylidene-3- (quinolin-4-ylthio)propanohydrazide,” Bulletin of Materials Science, vol. 31, no. 4, pp. 699–711, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Jayaperumal, “Effects of alcohol-based inhibitors on corrosion of mild steel in hydrochloric acid,” Materials Chemistry and Physics, vol. 119, no. 3, pp. 478–484, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. W. H. Li, Q. He, S. T. Zhang, C. L. Pei, and B. R. Hou, “Some new triazole derivatives as inhibitors for mild steel corrosion in acidic medium,” Journal of Applied Electrochemistry, vol. 38, no. 3, pp. 289–295, 2008. View at Google Scholar
  31. M. S. Morad, “An electrochemical study on the inhibiting action of some organic phosphonium compounds on the corrosion of mild steel in aerated acid solutions,” Corrosion Science, vol. 42, no. 8, pp. 1307–1326, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Gunasekaran and L. R. Chauhan, “Eco friendly inhibitor for corrosion inhibition of mild steel in phosphoric acid medium,” Electrochimica Acta, vol. 49, no. 25, pp. 4387–4395, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Alagta, I. Felhösi, J. Telegdi, I. Bertóti, and E. Kálmán, “Effect of metal ions on corrosion inhibition of pimeloyl-1,5-di-hydroxamic acid for steel in neutral solution,” Corrosion Science, vol. 49, no. 6, pp. 2754–2766, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Solmaz, “Investigation of the inhibition effect of 5-((E)-4-phenylbuta-1,3-dienylideneamino)-1,3,4-thiadiazole-2-thiol Schiff base on mild steel corrosion in hydrochloric acid,” Corrosion Science, vol. 52, no. 10, pp. 3321–3330, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. I. Ahamad, R. Prasad, and M. A. Quraishi, “Adsorption and inhibitive properties of some new Mannich bases of Isatin derivatives on corrosion of mild steel in acidic media,” Corrosion Science, vol. 52, no. 4, pp. 1472–1481, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Trachli, M. Keddam, H. Takenouti, and A. Srhiri, “Protective effect of electropolymerized 3-amino 1,2,4-triazole towards corrosion of copper in 0.5 M NaCl,” Corrosion Science, vol. 44, no. 5, pp. 997–1008, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. J. D. Talati and D. K. Gandhi, “N-heterocyclic compounds as corrosion inhibitors for aluminium-copper alloy in hydrochloric acid,” Corrosion Science, vol. 23, no. 12, pp. 1315–1332, 1983. View at Google Scholar · View at Scopus
  38. Z. Szklarska-Smialowska and J. Mankowski, “Crevice corrosion of stainless steels in sodium chloride solution,” Corrosion Science, vol. 18, no. 11, pp. 953–960, 1978. View at Google Scholar · View at Scopus
  39. A. Yurt, S. Ulutas, and H. Dal, “Electrochemical and theoretical investigation on the corrosion of aluminium in acidic solution containing some Schiff bases,” Applied Surface Science, vol. 253, no. 2, pp. 919–925, 2006. View at Publisher · View at Google Scholar · View at Scopus