Table of Contents Author Guidelines Submit a Manuscript
Journal of Materials
Volume 2013, Article ID 287853, 8 pages
http://dx.doi.org/10.1155/2013/287853
Research Article

Morphological and Cell Growth Assessment in Near Dense Hydroxyapatite Scaffold

1Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075
2Department of Mechanical Engineering, The University of Sheffield, Sir Frederick Mappin Building, Sheffield S1 3JD, UK

Received 27 November 2012; Revised 1 February 2013; Accepted 1 February 2013

Academic Editor: Amit Bandyopadhyay

Copyright © 2013 Florencia Edith Wiria et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. J. Lysaght and A. L. Hazlehurst, “Tissue engineering: the end of the beginning,” Tissue Engineering, vol. 10, no. 1-2, pp. 309–320, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Tadic and M. Epple, “Mechanically stable implants of synthetic bone mineral by cold isostatic pressing,” Biomaterials, vol. 24, no. 25, pp. 4565–4571, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Y. Lee, M. Park, H. M. Kim et al., “Ceramic bioactivity: progresses, challenges and perspectives,” Biomedical Materials, vol. 1, no. 2, pp. R31–R37, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Z. LeGeros and J. P. LeGeros, “Dense hydroxyapatite,” in An Introduction to Bioceramics, L. L. Hench and J. Wilson, Eds., vol. 1, pp. 139–180, World Scientific, Singapore, 1993. View at Google Scholar
  5. O. Malard, F. Espitalier, P. Bordure, G. Daculsi, P. Weiss, and P. Corre, “Biomaterials for tissue reconstruction and bone substitution of the ear, nose and throat, face and neck,” Expert Review of Medical Devices, vol. 4, no. 5, pp. 729–739, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Ducheyne and Q. Qiu, “Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function,” Biomaterials, vol. 20, no. 23-24, pp. 2287–2303, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Ylinen, M. Raekallio, R. Taurio et al., “Coralline hydroxyapatite reinforced with polylactide fibres in lumbar interbody implantation,” Journal of Materials Science, vol. 16, no. 4, pp. 325–331, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Iguchi, A. Kanemura, A. Kurihara et al., “Cervical laminoplasty: evaluation of bone bonding of a high porosity hydroxyapatite spacer,” Journal of Neurosurgery, vol. 98, no. 2, pp. 137–142, 2003. View at Google Scholar · View at Scopus
  9. S. Barinov and V. Komlev, Calcium Phosphate Based Bioceramics for Bone Tissue Engineering, Trans Tech Publications, Enfield, NH, USA, 2008.
  10. L. L. Hench, “Bioceramics: from concept to clinic,” Journal of the American Ceramic Society, vol. 74, no. 7, pp. 1487–1510, 1991. View at Publisher · View at Google Scholar
  11. G. With, H. J. A. Dijk, N. Hattu, and K. Prijs, “Preparation, microstructure and mechanical properties of dense polycrystalline hydroxy apatite,” Journal of Materials Science, vol. 16, no. 6, pp. 1592–1598, 1981. View at Publisher · View at Google Scholar · View at Scopus
  12. M. H. Nazarpak, M. Solati-Hashjin, and F. Moztarzadeh, “Preparation of hydroxyapatite ceramics for biomedical applications,” Journal of Ceramic Processing Research, vol. 10, no. 1, pp. 54–57, 2009. View at Google Scholar · View at Scopus
  13. R. H. Todd, D. K. Allen, and L. Alting, Manufacturing Processes Reference Guide, Industrial Press, New York, NY, USA, 1st edition, 1994.
  14. D. S. Seo and J. K. Lee, “AFM analysis of anisotropic dissolution in dense hydroxyapatite,” Ultramicroscopy, vol. 108, no. 10, pp. 1157–1162, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. J. W. Nicholson, The Chemistry of Medical and Dental Materials, Royal Society of Chemistry, Cambridge, UK, 2002.
  16. E. Landi, A. Tampieri, G. Celotti, and S. Sprio, “Densification behaviour and mechanisms of synthetic hydroxyapatites,” Journal of the European Ceramic Society, vol. 20, no. 14-15, pp. 2377–2387, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Chevalier, D. Chulia, C. Pouget, and M. Viana, “Fabrication of porous substrates: a review of processes using pore forming agents in the biomaterial field,” Journal of Pharmaceutical Sciences, vol. 97, no. 3, pp. 1135–1154, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. K. A. Hing, S. M. Best, K. E. Tanner, W. Bonfield, and P. A. Revell, “Quantification of bone ingrowth within bone-derived porous hydroxyapatite implants of varying density,” Journal of Materials Science, vol. 10, no. 10-11, pp. 663–670, 1999. View at Google Scholar · View at Scopus
  19. H.-W. Kim, J. C. Knowles, and H.-E. Kim, “Hydroxyapatite/poly(ε-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery,” Biomaterials, vol. 25, no. 7-8, pp. 1279–1287, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Omae, Y. Mochizuki, S. Yokoya, N. Adachi, and M. Ochi, “Effects of interconnecting porous structure of hydroxyapatite ceramics on interface between grafted tendon and ceramics,” Journal of Biomedical Materials Research A, vol. 79, no. 2, pp. 329–337, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Ma, C. Wang, and K. W. Peng, “Electrophoretic deposition of porous hydroxyapatite scaffold,” Biomaterials, vol. 24, no. 20, pp. 3505–3510, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. R. A. Ayers, S. J. Simske, C. R. Nunes, and L. M. Wolford, “Long-term bone ingrowth and residual microhardness of porous block hydroxyapatite implants in humans,” Journal of Oral and Maxillofacial Surgery, vol. 56, no. 11, pp. 1297–1301, 1998. View at Google Scholar · View at Scopus
  23. G. P. Evans, J. C. Behiri, J. D. Currey, and W. Bonfield, “Microhardness and Young's modulus in cortical bone exhibiting a wide range of mineral volume fractions, and in a bone analogue,” Journal of Materials Science, vol. 1, no. 1, pp. 38–43, 1990. View at Publisher · View at Google Scholar · View at Scopus
  24. C. V. M. Rodrigues, P. Serricella, A. B. R. Linhares et al., “Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering,” Biomaterials, vol. 24, no. 27, pp. 4987–4997, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. F. B. Bagambisa and U. Joos, “Preliminary studies on the phenomenological behaviour of osteoblasts cultured on hydroxyapatite ceramics,” Biomaterials, vol. 11, no. 1, pp. 50–56, 1990. View at Publisher · View at Google Scholar · View at Scopus
  26. G. M. Fuller and D. Shields, Molecular Basis of Medical Cell Biology, Prentice Hall, New Jersey, NJ, USA, 1998.
  27. W. Liu, M. K. Bergenstock, W. Lau, W. Sun, and Q. Liu, “Comparison of osteogenic cell differentiation within 2D and 3D culture systems,” in Proceedings of the 2nd World Congress on Tissue Engineering and Regenerative Medicine, Seoul, Korea, August-September 2009.
  28. H. F. Noller, “The driving force for molecular evolution of translation,” RNA, vol. 10, no. 12, pp. 1833–1837, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Ogiso, T. Tabata, T. Ichijo, and D. Borgese, “Examination of human bone surrounded by a dense hydroxyapatite dental implant after long-term use,” Journal of Long-Term Effects of Medical Implants, vol. 2, no. 4, pp. 235–247, 1992. View at Google Scholar · View at Scopus
  30. L. L. Hench, “Bioceramics,” Journal of the American Ceramic Society, vol. 81, no. 7, pp. 1705–1728, 1998. View at Google Scholar · View at Scopus