Table of Contents Author Guidelines Submit a Manuscript
Journal of Materials
Volume 2013, Article ID 297123, 7 pages
http://dx.doi.org/10.1155/2013/297123
Research Article

Flocculation Efficiency of Poly(Acrylamide-Co-Acrylic Acid) Obtained by Electron Beam Irradiation

1National Institute for Lasers, Plasma and Radiation Physics, Accelerators Laboratory, 409 Atomistilor Street, 077125 Magurele, Romania
2National Research and Development Institute for Textile, 93 Ion Minulescu Street, 031215 Bucharest, Romania

Received 5 December 2012; Revised 14 March 2013; Accepted 22 March 2013

Academic Editor: Maurizio Ferrari

Copyright © 2013 Gabriela Craciun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Brostow, S. Pal, and R. P. Singh, “A model of flocculation,” Materials Letters, vol. 61, no. 22, pp. 4381–4384, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Bratby, “Introduction,” in Coagulation and Flocculation in Water and WasteWater Treatment, chapter 1, pp. 1–8, IWA, London, UK, 2006. View at Google Scholar
  3. C. Xie, Y. Feng, W. Cao, H. Teng, J. Li, and Z. Lu, “Novel biodegradable flocculating agents prepared by grafting polyacrylamide to konjac,” Journal of Applied Polymer Science, vol. 111, no. 5, pp. 2527–2536, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Bratby, “Testing and control of coagulation and flocculation,” in Coagulation and Flocculation in Water and Wastewater Treatment, chapter 8, pp. 279–290, IWA, London, UK, 2006. View at Google Scholar
  5. J. K. Edzwald, “Coagulation in drinking water treatment: particles, organics and coagulants,” Water Science and Technology, vol. 27, no. 11, pp. 21–35, 1993. View at Google Scholar · View at Scopus
  6. J. Fettig, H. Ratnaweera, and H. Odegaard, “Synthetic organic polymers as primary coagulants in wastewater treatment,” Water Supply, vol. 9, no. 1, pp. 19–26, 1991. View at Google Scholar · View at Scopus
  7. C. L. McCormick, R. D. Hester, S. E. Morgan, and A. M. Safieddine, “Water-soluble copolymers. 31. Effects of molecular parameters, solvation, and polymer associations on drag reduction performance,” Macromolecules, vol. 23, no. 8, pp. 2132–2139, 1990. View at Google Scholar · View at Scopus
  8. C. L. McCormick, R. D. Hester, S. E. Morgan, and A. M. Safieddine, “Water-soluble copolymers. 30. Effects of molecular structure on drag reduction efficiency,” Macromolecules, vol. 23, no. 8, pp. 2124–2131, 1990. View at Google Scholar · View at Scopus
  9. C. L. McCormick, S. E. Morgan, and R. D. Hester, “The roles of molecular structure and solvation on drag reduction in aqueous solutions,” in Water Soluble Polymers: Synthesis, Solutions Properties and Applications, vol. 467 of ACS Symposium, chapter 21, pp. 320–327, American Chemical Society, Washington, DC, USA, 1991. View at Google Scholar
  10. N. Narkis, B. Ghattas, M. Rebhun, and A. J. Rubin, “The mechanism of flocculation with aluminium sALts in combination with polymeric flocculants as flocculant aids,” Water Supply, vol. 9, no. 1, pp. 37–44, 1991. View at Google Scholar · View at Scopus
  11. P. Selvapathy and M. J. Reddy, “Effect of polyelectrolytes on turbidity removal,” Water Supply, vol. 10, no. 4, pp. 175–178, 1992. View at Google Scholar · View at Scopus
  12. D. Martin, G. Craciun, E. Manaila et al., “Waste treatment by microwave and electron,” in Proceedings of the 2nd Environmental Physics Conference, pp. 91–100, 2006.
  13. D. I. Martin, D. I. Ighigeanu, E. N. Mateescu et al., “Combined Microwave and Accelerated Electron Beam Irradiation Facilities for Applied Physics and Chemistry,” IEEE Transactions on Industry Applications, vol. 40, no. 1, pp. 41–52, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. D. I. Martin, E. Mateescu, G. Craciun, D. Ighigeanu, and A. Ighigeanu, “Polymeric flocculants processing by accelerated electron beams and microwave heating,” Radiation Physics and Chemistry, vol. 64, no. 5-6, pp. 423–428, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Manaila, D. Martin, G. Craciun, D. Ighigeanu, C. Oproiu, and N. Iacob, “IAEA-CN-115-49 Electron beam processed polyelectrolytes,” in Proceedings of International Symposium on Utilization of Accelerators (CD-ROM), pp. 1–8, Dubrovnik, Croatia, 2005.
  16. D. Martin, M. Fiti, L. A. Radu et al., “Low power-high energy linacs for irradiation in polymeric systems,” Radiation Physics and Chemistry, vol. 45, no. 4, pp. 615–621, 1995. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Martin, M. Dragusin, A. Radu et al., “IAP linacs in applied research,” Nuclear Instruments and Methods in Physics Research B, vol. 113, no. 1–4, pp. 106–109, 1996. View at Google Scholar · View at Scopus
  18. D. Martin, M. Dragusin, M. Radoiu et al., “Polymers for waste water treatment,” Progress in Colloid and Polymer Science, vol. 102, pp. 147–151, 1996. View at Google Scholar · View at Scopus
  19. D. Martin, M. Radoiu, I. Calinescu et al., “Combined electron beam and microwave treatment for flue gas purification,” Materials and Manufacturing Processes, vol. 14, no. 3, pp. 365–382, 1999. View at Google Scholar · View at Scopus
  20. M. J. Caulfield, X. Hao, G. G. Qiao, and D. H. Solomon, “Degradation on polyacrylamides. Part II. Polyacrylamide gels,” Polymer, vol. 44, no. 14, pp. 3817–3826, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Dimonie, C. Boghina, C. Cincu, M. Marinescu, and N. Marinescu, Poliacrilamida, Editura Tehnica, Bucuresti, Romania, 1986.
  22. R. K. Richardson and S. Kasapis, “Rheological methods in the characterisation of food biopolymers,” Developments in Food Science C, vol. 39, pp. 1–48, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. M. A. Rao, “Introduction,” in Rheology of Fluid and Semisolid Foods, pp. 1–24, Aspen Publishers, Gaithersburg, Md, USA, 1999. View at Google Scholar
  24. M. E. Zeynali and A. Rabbii, “Alkaline hydrolysis of polyacrylamide and study on poly(acrylamide-co-sodium acrylate) properties,” Iranian Polymer Journal, vol. 11, no. 4, pp. 269–275, 2002. View at Google Scholar · View at Scopus
  25. S. Pal, D. Mal, and R. P. Singh, “Synthesis and characterization of cationic guar gum: a high performance flocculating agent,” Journal of Applied Polymer Science, vol. 105, no. 6, pp. 3240–3245, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. R. L. Shogren, “Flocculation of kaolin by waxy maize starch phosphates,” Carbohydrate Polymers, vol. 76, no. 4, pp. 639–644, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. P. M. Patterson and A. M. Jamieson, “Molecular weight scaling of the transport properties of polyacrylamide in water,” Macromolecules, vol. 18, no. 2, pp. 266–272, 1985. View at Google Scholar · View at Scopus
  28. S. Pal, D. Mal, and R. P. Singh, “Cationic starch: an effective flocculating agent,” Carbohydrate Polymers, vol. 59, no. 4, pp. 417–423, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Jha, S. Agrawal, A. Mishra, and J. P. Rai, “Synthesis, characterization and flocculation efficiency of poly(acrylamide-co-acrylic acid) in tannery waste-water,” Iranian Polymer Journal, vol. 10, no. 2, pp. 85–90, 2001. View at Google Scholar · View at Scopus
  30. Y.-H. Bae, H.-J. Kim, E.-J. Lee, N.-C. Sung, S.-S. Lee, and Y.-H. Kim, “Potable water treatment by polyacrylamide base flocculants coupled with an inorganic coagulant,” Environmental Engineering Research, vol. 12, no. 1, pp. 21–29, 2007. View at Publisher · View at Google Scholar
  31. H. A. Khouryieh, T. J. Herald, F. Aramouni, and S. Alavi, “Intrinsic viscosity and viscoelastic properties of xanthan/guar mixtures in dilute solutions: effect of salt concentration on the polymer interactions,” Food Research International, vol. 40, no. 7, pp. 883–893, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. P. J. Flory, “The structure of vinyl polymers,” in Principles of Polymer Chemistry, chapter 6, pp. 308–314, Cornell University Press, New York, NY, USA, 1953. View at Google Scholar