Table of Contents Author Guidelines Submit a Manuscript
Journal of Materials
Volume 2013, Article ID 517904, 8 pages
http://dx.doi.org/10.1155/2013/517904
Review Article

Bulk Metallic Glasses and Their Composites: A Brief History of Diverging Fields

Jet Propulsion Laboratory, California Institute of Technology, MS 18-105, 4800 Oak Grove Drive, Pasadena, CA 91109, USA

Received 12 November 2012; Accepted 13 December 2012

Academic Editor: Ram Gupta

Copyright © 2013 Douglas C. Hofmann. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Klement, R. H. Willens, and P. Duwez, “Non-crystalline structure in solidified Gold-Silicon alloys,” Nature, vol. 187, no. 4740, pp. 869–870, 1960. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Telford, “The case for bulk metallic glass,” Materials Today, vol. 7, no. 3, pp. 36–43, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. H. Liu, G. Wang, R. J. Wang, D. Q. Zhao, M. X. Pan, and W. H. Wang, “Super plastic bulk metallic glasses at room temperature,” Science, vol. 315, no. 5817, pp. 1385–1388, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Guo, P. F. Yan, Y. B. Wang et al., “Tensile ductility and necking of metallic glass,” Nature Materials, vol. 6, no. 10, pp. 735–739, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys,” Acta Materialia, vol. 48, no. 1, pp. 279–306, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Inoue and A. Takeuchi, “Recent development and application products of bulk glassy alloys,” Acta Materialia, vol. 59, no. 6, pp. 2243–2267, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Nishiyama, K. Amiya, and A. Inoue, “Novel applications of bulk metallic glass for industrial products,” Journal of Non-Crystalline Solids, vol. 353, no. 32-40, pp. 3615–3621, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Peker and W. L. Johnson, “A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5,” Applied Physics Letters, vol. 63, no. 17, pp. 2342–2344, 1993. View at Publisher · View at Google Scholar · View at Scopus
  9. H. B. Lou, X. D. Wang, F. Xu et al., “73 mm-diameter bulk metallic glass rod by copper mould casting,” Applied Physics Letters, vol. 99, Article ID 051910, 2011. View at Google Scholar
  10. C. A. Schuh, T. C. Hufnagel, and U. Ramamurty, “Mechanical behavior of amorphous alloys,” Acta Materialia, vol. 55, no. 12, pp. 4067–4109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Lowhaphandu and J. J. Lewandowski, “Fracture toughness and notched toughness of bulk amorphous alloy: Zr-Ti-Ni-Cu-Be,” Scripta Materialia, vol. 38, no. 12, pp. 1811–1817, 1998. View at Google Scholar · View at Scopus
  12. C. C. Hays, C. P. Kim, and W. L. Johnson, “Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions,” Physical Review Letters, vol. 84, no. 13, article no. 2901, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. M. D. Demetriou, G. Kaltenboeck, J. Y. Suh et al., “Glassy steel optimized for glass-forming ability and toughness,” Applied Physics Letters, vol. 95, no. 4, Article ID 041907, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. R. D. Conner, Y. Li, W. D. Nix, and W. L. Johnson, “Shear band spacing under bending of Zr-based metallic glass plates,” Acta Materialia, vol. 52, no. 8, pp. 2429–2434, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. R. D. Conner, W. L. Johnson, N. E. Paton, and W. D. Nix, “Shear bands and cracking of metallic glass plates in bending,” Journal of Applied Physics, vol. 94, no. 2, pp. 904–911, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. M. D. Demetriou, M. E. Launey, G. Garrett et al., “A damage-tolerant glass,” Nature Materials, vol. 10, no. 2, pp. 123–128, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Choi-Yim, R. D. Conner, F. Szuecs, and W. L. Johnson, “Processing, microstructure and properties of ductile metal particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites,” Acta Materialia, vol. 50, no. 10, pp. 2737–2745, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Choi-Yim, R. Busch, and W. L. Johnson, “The effect of silicon on the glass forming ability of the Cu47Ti34Zr11Ni8 bulk metallic glass forming alloy during processing of composites,” Journal of Applied Physics, vol. 83, no. 12, pp. 7993–7997, 1998. View at Google Scholar · View at Scopus
  19. F. Szuecs, C. P. Kim, and W. L. Johnson, “Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite,” Acta Materialia, vol. 49, no. 9, pp. 1507–1513, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Zhu, H. Zhang, Z. Hu, W. Zhang, and A. Inoue, “Ta-particulate reinforced Zr-based bulk metallic glass matrix composite with tensile plasticity,” Scripta Materialia, vol. 62, no. 5, pp. 278–281, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. L. Lee, Y. Li, and C. A. Schuh, “Effect of a controlled volume fraction of dendritic phases on tensile and compressive ductility in La-based metallic glass matrix composites,” Acta Materialia, vol. 52, no. 14, pp. 4121–4131, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Tan, Y. Zhang, and Y. Li, “Synthesis of La-based in-situ bulk metallic glass matrix composite,” Intermetallics, vol. 10, no. 11-12, pp. 1203–1205, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. U. Kuhn, J. Eckert, N. Mattern, and L. Schultz, “Microstructure and mechanical properties of slowly cooled Zr-Nb-Cu-Ni-Al composites with ductile bcc phase,” Materials Science and Engineering A, vol. 375–377, pp. 322–326, 2004. View at Publisher · View at Google Scholar
  24. C. Fan, R. T. Ott, and T. C. Hufnagel, “Metallic glass matrix composite with precipitated ductile reinforcement,” Applied Physics Letters, vol. 81, no. 6, pp. 1020–1022, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. U. Kühn, J. Eckert, N. Mattern, and L. Schultz, “ZrNbCuNiAl bulk metallic glass matrix composites containing dendritic bcc phase precipitates,” Applied Physics Letters, vol. 80, no. 14, pp. 2478–2480, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. D. C. Hofmann and W. L. Johnson, “Improving ductility in nanostructured materials and metallic glasses: “three laws”,” Materials Science Forum, vol. 633-634, pp. 657–663, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. D. C. Hofmann, J. Y. Suh, A. Wiest et al., “Designing metallic glass matrix composites with high toughness and tensile ductility,” Nature, vol. 451, no. 7182, pp. 1085–1089, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Soinila, T. Pihlajamäki, S. Bossuyt, and H. Hänninen, “A combined arc-melting and tilt-casting furnace for the manufacture of high-purity bulk metallic glass materials,” Review of Scientific Instruments, vol. 82, no. 7, Article ID 073901, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. W. L. Johnson, G. Kaltenboeck, M. D. Demetriou et al., “Beating crystallization in glass-forming metals by millisecond heating and processing,” Science, vol. 332, no. 6031, pp. 828–833, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Schroers, “Processing of bulk metallic glass,” Advanced Materials, vol. 22, no. 14, pp. 1566–1597, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Wiest, G. Duan, M. D. Demetriou et al., “Zr-Ti-based Be-bearing glasses optimized for high thermal stability and thermoplastic formability,” Acta Materialia, vol. 56, no. 11, pp. 2625–2630, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Duan, A. Wiest, M. L. Lind, A. Kahl, and W. L. Johnson, “Lightweight Ti-based bulk metallic glasses excluding late transition metals,” Scripta Materialia, vol. 58, no. 6, pp. 465–468, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Duan, A. Wiest, M. L. Lind, J. Li, W. K. Rhim, and W. L. Johnson, “Bulk metallic glass with benchmark thermoplastic processability,” Advanced Materials, vol. 19, no. 23, pp. 4272–4275, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. D. C. Hofmann, J. Y. Suh, A. Wiest, and W. Johnson, “New processing possibilities for highly toughened metallic glass matrix composites with tensile ductility,” Scripta Materialia, vol. 59, no. 7, pp. 684–687, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Kumar, A. Desai, and J. Schroers, “Bulk metallic glass: the smaller the better,” Advanced Materials, vol. 23, no. 4, pp. 461–476, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Carmo, R. C. Sekol, S. Ding, G. Kumar, J. Schroers, and A. D. Taylor, “Bulk metallic glass nanowire architecture for electrochemical applications,” ACS Nano, vol. 5, no. 4, pp. 2979–2983, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Martinez, G. Kumar, and J. Schroers, “Hot rolling of bulk metallic glass in its supercooled liquid region,” Scripta Materialia, vol. 59, no. 2, pp. 187–190, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Kumar, P. A. Staffier, J. Blawzdziewicz, U. D. Schwarz, and J. Schroers, “Atomically smooth surfaces through thermoplastic forming of metallic glass,” Applied Physics Letters, vol. 97, no. 10, Article ID 101907, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Kumar, H. X. Tang, and J. Schroers, “Nanomoulding with amorphous metals,” Nature, vol. 457, no. 7231, pp. 868–872, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. B. Zhang, D. Q. Zhao, M. X. Pan, W. H. Wang, and A. L. Greer, “Amorphous metallic plastic,” Physical Review Letters, vol. 94, no. 20, Article ID 205502, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Schroers, Q. Pham, and A. Desai, “Thermoplastic forming of bulk netallic glass—a technology for MEMS and microstructure fabrication,” Journal of Microelectromechanical Systems, vol. 16, no. 2, pp. 240–247, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Wu, Y. Xiao, G. Chen, C. T. Liu, and Z. Lu, “Bulk metallic glass composites with transformationMediated work-hardening and ductility,” Advanced Materials, vol. 22, no. 25, pp. 2770–2773, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Pauly, G. Liu, G. Wang et al., “Modeling deformation behavior of Cu-Zr-Al bulk metallic glass matrix composites,” Applied Physics Letters, vol. 95, Article ID 101906, 2009. View at Google Scholar
  44. D. C. Hofmann, H. Kozachkov, H. E. Khalifa et al., “Semi-solid induction forging of metallic glass matrix composites,” Journal of the Minerals, Metals and Materials Society, vol. 61, no. 12, pp. 11–17, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. D. C. Hofmann, J. Y. Suh, A. Wiest, M. L. Lind, M. D. Demetriou, and W. L. Johnson, “Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 51, pp. 20136–20140, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. J. L. Cheng, G. Chen, F. Xu, Y. L. Du, Y. S. Li, and C. T. Liu, “Correlation of the microstructure and mechanical properties of Zr-based in-situ bulk metallic glass matrix composites,” Intermetallics, vol. 18, no. 12, pp. 2425–2430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. J. W. Qiao, J. T. Zhang, F. Jiang et al., “Development of plastic Ti-based bulk-metallic-glass-matrix composites by controlling the microstructures,” Materials Science & Engineering A, vol. 527, no. 29-30, pp. 7752–7756, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. J. W. Qiao, S. Wang, Y. Zhang, P. K. Liaw, and G. L. Chen, “Large plasticity and tensile necking of Zr-based bulk-metallic-glass-matrix composites synthesized by the Bridgman solidification,” Applied Physics Letters, vol. 94, no. 15, Article ID 151905, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. J. L. Cheng, G. Chen, F. Xu, Y. L. Du, Y. S. Li, and C. T. Liu, “Correlation of the microstructure and mechanical properties of Zr-based in-situ bulk metallic glass matrix composites,” Intermetallics, vol. 18, no. 12, pp. 2425–2430, 2010. View at Publisher · View at Google Scholar · View at Scopus