Table of Contents Author Guidelines Submit a Manuscript
Journal of Materials
Volume 2014, Article ID 736271, 8 pages
http://dx.doi.org/10.1155/2014/736271
Research Article

Preparation and Characterization of K-Carrageenan/Nanosilica Biocomposite Film

Department of Polymer and Surface Engineering, Institute of Chemical Technology, Matunga (E), Mumbai, Maharashtra 400 019, India

Received 8 November 2013; Revised 12 January 2014; Accepted 20 January 2014; Published 3 March 2014

Academic Editor: Peter Chang

Copyright © 2014 Lokesh R. Rane et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. K. Mohanty, L. T. Drzal, and M. Misra, “Nano reinforcements of bio-based polymers: the hope and the reality,” Polymeric Materials Science and Engineering, vol. 88, pp. 60–61, 2003. View at Google Scholar
  2. F. Van de Velde and G. A. De Ruiter, Carrageenan Polysaccharides and Polyamides in the Food Industry, Wiley-VCH, Weinheim, Germany, 2005.
  3. C. L. Wu, M. Q. Zhang, M. Z. Rong, and K. Friedrich, “Tensile performance improvement of low nanoparticles filled-polypropylene composites,” Composites Science and Technology, vol. 62, no. 10-11, pp. 1327–1340, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. M. W. Lee, X. Hu, L. Li, C. Y. Yue, K. C. Tam, and L. Y. Cheong, “PP/LCP composites: effects of shear flow, extensional flow and nanofillers,” Composites Science and Technology, vol. 63, no. 13, pp. 1921–1929, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. M. M. Hasan, Y. Zhou, H. Mahfuz, and S. Jeelani, “Effect of SiO2 nanoparticle on thermal and tensile behavior of nylon-6,” Materials Science and Engineering A, vol. 429, no. 1-2, pp. 181–188, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Sargsyan, A. Tonoyan, S. Davtyan, and C. Schick, “The amount of immobilized polymer in PMMA SiO2 nanocomposites determined from calorimetric data,” European Polymer Journal, vol. 43, no. 8, pp. 3113–3127, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. R. D. Priestley, P. Rittigstein, L. J. Broadbelt, K. Fukao, and J. M. Torkelson, “Evidence for the molecular-scale origin of the suppression of physical ageing in confined polymer: fluorescence and dielectric spectroscopy studies of polymer-silica nanocomposites,” Journal of Physics Condensed Matter, vol. 19, no. 20, Article ID 205120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Chrissafis, K. M. Paraskevopoulos, E. Pavlidou, and D. Bikiaris, “Thermal degradation mechanism of HDPE nanocomposites containing fumed silica nanoparticles,” Thermochimica Acta, vol. 485, no. 1-2, pp. 65–71, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. E. F. Voronin, V. M. Gun'ko, N. V. Guzenko et al., “Interaction of poly(ethylene oxide) with fumed silica,” Journal of Colloid and Interface Science, vol. 279, no. 2, pp. 326–340, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Chrissafis, K. M. Paraskevopoulos, G. Z. Papageorgiou, and D. N. Bikiaris, “Thermal and dynamic mechanical behavior of bionanocomposites: fumed silica nanoparticles dispersed in poly(vinyl pyrrolidone), chitosan, and poly(vinyl alcohol),” Journal of Applied Polymer Science, vol. 110, no. 3, pp. 1739–1749, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Lee, K. Jin Lee, and J. Jang, “Effect of silica nanofillers on isothermal crystallization of poly(vinyl alcohol): in-situ ATR-FTIR study,” Polymer Testing, vol. 27, no. 3, pp. 360–367, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. Y.-L. Chung, S. Ansari, L. Estevez, S. Hayrapetyan, E. P. Giannelis, and H.-M. Lai, “Preparation and properties of biodegradable starch-clay nanocomposites,” Carbohydrate Polymers, vol. 79, no. 2, pp. 391–396, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. N. R. Savadekar, V. S. Karande, N. Vigneshwaran, A. K. Bharimalla, and S. T. Mhaske, “Preparation of nano cellulose fibers and its application in kappa-carrageenan based film,” International Journal of Biological Macromolecules, vol. 51, pp. 1008–1013, 2012. View at Google Scholar
  14. N. R. Savadekar and S. T. Mhaske, “Synthesis of nano cellulose fibers and effect on thermoplastics starch based films,” Carbohydrate Polymers, vol. 89, no. 1, pp. 146–151, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Jose, S. Thomas, P. K. Biju, P. Koshy, and J. Karger-Kocsis, “Thermal degradation and crystallisation studies of reactively compatibilised polymer blends,” Polymer Degradation and Stability, vol. 93, no. 6, pp. 1176–1187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Rao and J. Johns, “Thermal behavior of chitosan/natural rubber latex blends TG and DSC analysis,” Journal of Thermal Analysis and Calorimetry, vol. 92, no. 3, pp. 801–806, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. D.-W. Lee, S.-J. Park, S.-K. Ihm, and K.-H. Lee, “One-pot synthesis of Pt-nanoparticle-embedded mesoporous titania/silica and its remarkable thermal stability,” Journal of Physical Chemistry C, vol. 111, no. 21, pp. 7634–7638, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Yuan, C. Li, G. Guan, Y. Xiao, and D. Zhang, “Thermal degradation investigation of poly(ethylene terephthalate)/fibrous silicate nanocomposites,” Polymer Degradation and Stability, vol. 93, no. 2, pp. 466–475, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. J. P. Busnel and S. B. Rose-Murphy, “Thixotropic behaviour of very dilute gelatin solutions,” International Journal of Biological Macromolecules, vol. 10, no. 2, pp. 121–124, 1988. View at Google Scholar · View at Scopus