Table of Contents Author Guidelines Submit a Manuscript
Journal of Materials
Volume 2014 (2014), Article ID 802467, 6 pages
http://dx.doi.org/10.1155/2014/802467
Review Article

From Garbage to Biomaterials: An Overview on Egg Shell Based Hydroxyapatite

1Department of Microbiology, Kaduna State University, P.M.B. 2339, Kaduna, Nigeria
2Faculty of Bioscience & Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
3Department of Biological Sciences, Bauchi State University Gadau, P.M.B. 065, Bauchi, Nigeria
4Department of Biological Sciences, Gombe State University, P.M.B. 0127, Gombe, Nigeria
5Department of Biochemistry, Bauchi State University Gadau, P.M.B. 065, Bauchi, Nigeria
6Department of Microbiology, Ibrahim Badamasi Babangida University Lapai, P.M.B. 011, Niger, Nigeria

Received 26 March 2014; Revised 14 July 2014; Accepted 14 July 2014; Published 25 August 2014

Academic Editor: Roger Narayan

Copyright © 2014 Idris Abdulrahman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. A. Seadi and J. B. Holm-Nielsen, “Agricultural wastes,” in Waste Management Series, I. Twardowska and J. L. William, Eds., Elsevier, 2004. View at Google Scholar
  2. M. Martin-Luengo, M. Yates, M. Ramos et al., “Renewable raw materials for advanced applications,” in Proceedings of the World Congress on Sustainable Technologies (WCST '11), pp. 19–22, IEEE, 2011.
  3. I. H. Ling and D. C. L. Teo, “Lightweight concrete bricks produced from industrial and agricultural solid waste,” in Proceedings of the World Congress on Sustainable Technologies (WCST '11), pp. 148–152, November 2011. View at Scopus
  4. S. N. Surip, N. N. Bonnia, H. Anuar, N. A. Hassan, and N. M. Yusof, “Nanofibers from oil palm trunk (OPT): preparation & chemical analysis,” in Proceedings of the IEEE Symposium on Business, Engineering and Industrial Applications (ISBELA '12), pp. 809–812, Bandung, Indonesia, September 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. Zakaria, S. Buniran, and M. I. Ishak, “Nanopores activated carbon rice husk,” in Proceedings of the International Conference on Enabling Science and Nanotechnology (ESciNano '10), pp. 1–2, Kuala Lumpur, Malaysia, December 2010. View at Publisher · View at Google Scholar
  6. G. Y. Peng, Y. S. Fang, Z. J. Zhe, W. Z. Chen, and Z. M. Yu, “Preparation of active carbon with high specific surface srea from rice husks,” Chemical Research in Chinese Universities, vol. 3, 2000. View at Google Scholar
  7. D. di Gioia, F. Fava, F. Luziatelli, and M. Ruzzi, “6.50—vanillin production from agro-industrial wastes,” in Comprehensive Biotechnology, M.-Y. Murray, Ed., Academic Press, Burlington, Vt, USA, 2nd edition, 2011. View at Google Scholar
  8. Z. Xu, Y. Zhu, M. Liang, H. Zhang, and H. Liu, “Optimization of the preparation conditions for activated carbons from sugarcane bagasse—an agricultural waste,” in Proceedings of the International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (CDCIEM '11), pp. 555–559, IEEE, February 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Boonpoke, S. Chiarakorn, N. Laosiripojana, S. Towprayoon, and A. Chidthaisong, “Synthesis of activated carbon and MCM-41 from bagasse and rice husk and their carbon dioxide adsorption capacity,” Journal of Sustainable Energy & Environment, vol. 2, pp. 77–81, 2013. View at Google Scholar
  10. N. A. Rashidi, S. Yusup, M. M. Ahmad, N. M. Mohamed, and B. H. Hameed, “Activated carbon from the renewable agricultural residues using single step physical activation: a preliminary analysis,” APCBEE Procedia, vol. 3, pp. 84–92, 2012. View at Publisher · View at Google Scholar
  11. M. A. Martin-Luengo, M. Yates, M. Ramos et al., “Biomaterials from beer manufacture waste for bone growth scaffolds,” Green Chemistry Letters and Reviews, vol. 4, no. 3, pp. 229–233, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Li and S. C. Tjong, “Preparation and characterization of isotactic polypropylene reinforced with hydroxyapatite nanorods,” Journal of Macromolecular Science B: Physics, vol. 50, no. 10, pp. 1983–1995, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Ducheyne, W. van Raemdonck, J. C. Heughebaert, and M. Heughebaert, “Structural analysis of hydroxyapatite coatings on titanium,” Biomaterials, vol. 7, no. 2, pp. 97–103, 1986. View at Publisher · View at Google Scholar · View at Scopus
  14. K. de Groot, “Clinical applications of calcium phosphate biomaterials: a review,” Ceramics International, vol. 19, no. 5, pp. 363–366, 1993. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Mulijani and G. Sulistyso, “Formation and characterization of hydroxyapatite/chitosan composite: effect of composite hydroxyapatite coating and its application on biomedical materials,” in Chemistry of Phytopotentials: Health, Energy and Environmental Perspectives, L. D. Khemani, M. M. Srivastava, and S. Srivastava, Eds., Springer, Berlin, Germany, 2012. View at Google Scholar
  16. N. Elizondo-Villarreal, A. Martínez-De-La-Cruz, R. O. Guerra, J. L. Gómez-Ortega, L. M. Torres-Martínez, and V. M. Castaño, “Biomaterials from agricultural waste: eggshell-based hydroxyapatite,” Water, Air, and Soil Pollution, vol. 223, no. 7, pp. 3643–3646, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Ghomi, M. H. Fathi, and H. Edris, “Preparation of nanostructure hydroxyapatite scaffold for tissue engineering applications,” Journal of Sol-Gel Science and Technology, vol. 58, no. 3, pp. 642–650, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. H. S. Liu, T. S. Chin, L. S. Lai et al., “Hydroxyapatite synthesized by a simplified hydrothermal method,” Ceramics International, vol. 23, no. 1, pp. 19–25, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. A. R. Amini, C. T. Laurencin, and S. P. Nukavarapu, “Bone tissue engineering: recent advances and challenges,” Critical Reviews in Biomedical Engineering, vol. 40, no. 5, pp. 363–408, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Dey, “Evaluation of collagen-hydroxyapatite scaffold for bone tissue engineering,” in Proceedings of the 13th International Conference on Biomedical Engineering, pp. 1267–1270, Springer, 2009.
  21. R. Lanza, R. Langer, and J. P. Vacanti, Principles of Tissue Engineering, Academic Press, 2011.
  22. B. Leukers, H. Gülkan, S. H. Irsen et al., “Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing,” Journal of Materials Science: Materials in Medicine, vol. 16, no. 12, pp. 1121–1124, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Luo, G. Engelmayr, D. T. Auguste et al., “Three-dimensional scaffolds,” in Principles of Tissue Engineering, R. Lanza, R. Langer, and J. Vacanti, Eds., chapter 25, Academic Press, Burlington, Mass, USA, 3rd edition, 2007. View at Google Scholar
  24. H. Zhou and J. Lee, “Nanoscale hydroxyapatite particles for bone tissue engineering,” Acta Biomaterialia, vol. 7, no. 7, pp. 2769–2781, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. I. O. Smith, X. H. Liu, L. A. Smith, and P. X. Ma, “Nanostructured polymer scaffolds for tissue engineering and regenerative medicine,” Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol. 1, no. 2, pp. 226–236, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Wei and P. X. Ma, “Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering,” Biomaterials, vol. 25, no. 19, pp. 4749–4757, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. G. S. Kumar, A. Thamizhavel, and E. K. Girija, “Microwave conversion of eggshells into flower-like hydroxyapatite nanostructure for biomedical applications,” Materials Letters, vol. 76, pp. 198–200, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Wu, H. Tsou, H. Hsu, S. Hsu, S. Liou, and W. Ho, “A hydrothermal synthesis of eggshell and fruit waste extract to produce nanosized hydroxyapatite,” Ceramics International, vol. 39, no. 7, pp. 8183–8188, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. E. C. Li-Chan and H.-O. Kim, “Structure and chemical composition of eggs,” Egg Bioscience and Biotechnology, 2008. View at Publisher · View at Google Scholar
  30. E. M. Rivera, M. Araiza, W. Brostow et al., “Synthesis of hydroxyapatite from eggshells,” Materials Letters, vol. 41, no. 3, pp. 128–134, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. K. P. Sanosh, M.-C. Chu, A. Balakrishnan, T. N. Kim, and S.-J. Cho, “Utilization of biowaste eggshells to synthesize nanocrystalline hydroxyapatite powders,” Materials Letters, vol. 63, no. 24-25, pp. 2100–2102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Siva Rama Krishna, A. Siddharthan, S. K. Seshadri, and T. S. Sampath Kumar, “A novel route for synthesis of nanocrystalline hydroxyapatite from eggshell waste,” Journal of Materials Science: Materials in Medicine, vol. 18, no. 9, pp. 1735–1743, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Akram, R. Ahmed, I. Shakir, W. A. W. Ibrahim, and R. Hussain, “Extracting hydroxyapatite and its precursors from natural resources,” Journal of Materials Science, vol. 49, no. 4, pp. 1461–1475, 2014. View at Publisher · View at Google Scholar
  34. G. Gergely, f. Wéber, I. Lukács, and et al, “Preparation and characterization of hydroxyapatite from eggshell,” Ceramics International, vol. 36, pp. 803–806.
  35. S. Kim, M. Sun Park, O. Jeon, C. Yong Choi, and B. Kim, “Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering,” Biomaterials, vol. 27, no. 8, pp. 1399–1409, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Han, K. Xu, G. Montay, T. Fu, and J. Lu, “Evaluation of nanostructured carbonated hydroxyapatite coatings formed by a hybrid process of plasma spraying and hydrothermal synthesis,” Journal of Biomedical Materials Research, vol. 60, no. 4, pp. 511–516, 2002. View at Publisher · View at Google Scholar
  37. K. Balázsi, H.-Y. Sim, J.-Y. Choi, S.-G. Kim, C.-H. Chae, and C. Balázsi, “Biogenic nanosized hydroxyapatite for tissue engineering applications,” in International Symposium on Biomedical Engineering and Medical Physics, 10–12 October, 2012, Riga, Latvia, vol. 38 of IFMBE Proceedings, pp. 190–193, 2013. View at Publisher · View at Google Scholar
  38. C. Zhang, J. Yang, Z. Quan et al., “Hydroxyapatite nano- and microcrystals with multiform morphologies: controllable synthesis and luminescence properties,” Crystal Growth and Design, vol. 9, no. 6, pp. 2725–2733, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Liu, X. Ye, H. Wang, M. Zhu, B. Wang, and H. Yan, “The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method,” Ceramics International, vol. 29, no. 6, pp. 629–633, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Dasgupta, A. Singh, S. Adak, and K. M. Purohit, “Synthesis and characterization of hydroxyapatite produced from eggshell,” in Proceedings of the International Symposium of Research Students on Materials Science and Engineering, pp. 1–6, 2004.
  41. K. C. B. Yeong, J. Wang, and S. C. Ng, “Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO4,” Biomaterials, vol. 22, no. 20, pp. 2705–2712, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Rhee, “Synthesis of hydroxyapatite via mechanochemical treatment,” Biomaterials, vol. 23, no. 4, pp. 1147–1152, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Balázsi, P. Gouma, C.-H. Chae, and S.-G. Kim, “Nanostructured hydroxyapatite composite for medical applications,” in Proceedings of the 5th European Conference of the International Federation for Medical and Biological Engineering, pp. 996–999, Springer, 2012.