Table of Contents Author Guidelines Submit a Manuscript
Journal of Mathematics
Volume 2013 (2013), Article ID 645752, 10 pages
http://dx.doi.org/10.1155/2013/645752
Research Article

Wronskian Addition Formula and Darboux-Pöschl-Teller Potentials

Institut de Mathématiques de Bourgogne, UMR 5584 CNRS, Université de Bourgogne, Faculté des Sciences Mirande, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France

Received 30 November 2012; Accepted 25 February 2013

Academic Editor: Alberto Enciso

Copyright © 2013 Pierre Gaillard and Vladimir Matveev. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Darboux, Sur une Proposition Relative aux Équations Linéaires, T. CXIV, Comptes rendus de l’Académie des Sciences, Serie I, Mathematics, Paris, France, 1882.
  2. G. Darboux, Sur une Équation linéaire, T. XCIV, Comptes Rendus de l'Académie des Sciences, Serie I, Mathematics, Paris, France, 1882.
  3. A. Treibich, “Difference analogs of elliptic KdV solitons and Schrödinger operators,” International Mathematics Research Notices, no. 6, pp. 313–360, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. A. Treibich and J.-L. Verdier, “Revêtements exceptionnels et sommes de 4 nombres triangulaires,” Duke Mathematical Journal, vol. 68, no. 2, pp. 217–236, 1992. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  5. G. Pöschl and E. Teller, “Bemerkungen zur Quantenmechanik des anharmonischen Oszillators,” Zeitschrift fur Physik A, vol. 83, pp. 143–151, 1933. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  6. M. Crum, “Associated Sturm-Liouville systems,” The Quarterly Journal of Mathematics, vol. 6, pp. 121–127, 1955. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. V. B. Matveev, “Darboux transformation and the explicit solutions of differential-difference and difference-difference evolution equations I,” Letters in Mathematical Physics, vol. 3, no. 3, pp. 213–216, 1979. View at Publisher · View at Google Scholar · View at Zentralblatt MATH
  8. V. B. Matveev, “Darboux transformations, covariance theorems and integrable systems,” in L. D. Faddeev's Seminar on Mathematical Physics, vol. 201 of American Mathematical Society Translations, pp. 179–209, 2000. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons, Nonlinear Dynamics, Springer, Berlin, Germany, 1991. View at MathSciNet
  10. G. Darboux, Leçons sur la Théorie des Surfaces, vol. 2, Gauthier, Paris, France, 2nd edition, 1915.
  11. P. Gaillard and V. B. Matveev, Wronskian Addition Formula and Its Applications, vol. 161 of Max-Planck-Institut für Mathematik, MPI 02-31, 2002.
  12. P. Gaillard and V. B. Matveev, “Wronskian and Casorati determinant representations for Darboux-Pöschl-Teller potentials and their difference extensions,” Journal of Physics A, vol. 42, no. 40, Article ID 404009, p. 16, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. Y. Grandati, “A short proof of the Gaillard-Matveev theorem based on shape invariance arguments,” http://arxiv.org/abs/1211.2392.
  14. V. B. Matveev, Functional-Difference Analogues of Darboux-Pöschl-Teller Potentials, Max Planck Institut für Mathematik, Bonn, Germany, 2002.
  15. V. B. Matveev, “Functional-difference deformations of Darboux-Pöshl-Teller potentials,” in Bilinear Integrable Systems: From Classical to Quantum, Continuous to Discrete, Nato Science Series, pp. 191–208, Springer, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  16. P. Gaillard, “A new family of deformations of Darboux-Pöschl-Teller potentials,” Letters in Mathematical Physics, vol. 68, no. 2, pp. 77–90, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  17. P. Gaillard and V. B. Matveev, “New formulas for the eigenfunctions of the two-particle difference Calogero-Moser system,” Letters in Mathematical Physics, vol. 89, no. 1, pp. 1–12, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. P. Gaillard and V. B. Matveev, “Casorati determinant formulation of the DDPTII equation and elementary Askey-Wilson functions,” In press. View at Publisher · View at Google Scholar
  19. G. Frobenius, “Über die determinante mehrerer functionen einer variabeln,” Journal für die Reine und Angewandte Mathematik, vol. 77, pp. 245–257, 1874. View at Google Scholar
  20. S. G. Vlăduţ, “Isogeny class and Frobenius root statistics for abelian varieties over finite fields,” Moscow Mathematical Journal, vol. 1, no. 1, pp. 125–139, 2001. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  21. G. Frobenius and L. Stickelberg, “Über die addition und Multiplication der elliptishen function,” Journal fur die Reine und Angewandte Mathematik, vol. 88, pp. 146–184, 1880. View at Google Scholar
  22. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, UK, 1996. View at MathSciNet
  23. E. D. Belokolos, A. I. Bobenko, A. R. Its, V. Z. Enolskij, and V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer Series in Nonlinear Dynamics, Springer, 1994.
  24. A. Treibich and J.-L. Verdier, “Revêtements tangentiels et sommes de 4 nombres triangulaires,” Comptes Rendus de l'Académie des Sciences. Série I. Mathématique, vol. 311, no. 1, pp. 51–54, 1990. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  25. B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, Non-Linear Equations of Korteweg–de Vries Type, Finite-Zone Linear Operators, and Abelian Varieties, vol. 60 of London Mathematical Society Lecture Note Series, Cambridge University Press, 1981.
  26. A. R. Its and V. B. Matveev, “Hill operators with a finite number of lacunae,” Funktsional'nyi Analiz i ego Prilozheniia, vol. 9, no. 1, pp. 69–70, 1975. View at Google Scholar · View at MathSciNet
  27. A. O. Smirnov, “Elliptic solutions and Heun’s equation,” http://arxiv.org/abs/math/0109149. View at Publisher · View at Google Scholar
  28. K. Takemura, “On the eigenstates of the elliptic Calogero-Moser model,” Letters in Mathematical Physics, vol. 53, no. 3, pp. 181–194, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  29. Y. Berest, “Solution of a restricted Hadamard problem on Minkowski spaces,” Communications on Pure and Applied Mathematics, vol. 50, no. 10, pp. 1019–1052, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  30. Y. Berest and I. M. Loutsenko, “Huygens' principle in Minkowski spaces and soliton solutions of the Korteweg-de Vries equation,” Communications in Mathematical Physics, vol. 190, no. 1, pp. 113–132, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  31. Y. Berest, T. Cramer, and F. Eshmatov, “Heat kernel coefficients for two-dimensional Schrödinger operators,” Communications in Mathematical Physics, vol. 283, no. 3, pp. 853–860, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet