Table of Contents
Journal of Medical Engineering
Volume 2013, Article ID 104684, 13 pages
Research Article

Hybrid Discrete Wavelet Transform and Gabor Filter Banks Processing for Features Extraction from Biomedical Images

Department of Computer Science, University of Quebec at Montreal, 201 President-Kennedy, Local PK-4150, Montreal, QC, Canada H2X 3Y7

Received 13 December 2012; Revised 12 March 2013; Accepted 27 March 2013

Academic Editor: Ying Zhuge

Copyright © 2013 Salim Lahmiri and Mounir Boukadoum. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A new methodology for automatic feature extraction from biomedical images and subsequent classification is presented. The approach exploits the spatial orientation of high-frequency textural features of the processed image as determined by a two-step process. First, the two-dimensional discrete wavelet transform (DWT) is applied to obtain the HH high-frequency subband image. Then, a Gabor filter bank is applied to the latter at different frequencies and spatial orientations to obtain new Gabor-filtered image whose entropy and uniformity are computed. Finally, the obtained statistics are fed to a support vector machine (SVM) binary classifier. The approach was validated on mammograms, retina, and brain magnetic resonance (MR) images. The obtained classification accuracies show better performance in comparison to common approaches that use only the DWT or Gabor filter banks for feature extraction.