Table of Contents
Journal of Medical Engineering
Volume 2013, Article ID 165782, 11 pages
http://dx.doi.org/10.1155/2013/165782
Research Article

Comparison of Respiratory Resistance Measurements Made with an Airflow Perturbation Device with Those from Impulse Oscillometry

1Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
2Engineering and Scientific Research Associates, Olney, MD 20832, USA
3School of Medicine, University of Maryland, Baltimore, MD 21201, USA

Received 31 October 2012; Revised 19 February 2013; Accepted 25 February 2013

Academic Editor: Chun-Yuh Charles Huang

Copyright © 2013 J. Pan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. C. Grinnan and J. D. Truwit, “Clinical review: respiratory mechanics in spontaneous and assisted ventilation,” Critical Care, vol. 9, no. 5, pp. 472–484, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. A. T. Johnson, Biomechanics and Exercise Physiology: Quantitative Modeling, Taylor & Francis, Boca Raton, Fla, USA, 2007.
  3. A. M. G. T. Di Mango, A. J. Lopes, J. M. Jansen, and P. L. Melo, “Changes in respiratory mechanics with increasing degrees of airway obstruction in COPD: detection by forced oscillation technique,” Respiratory Medicine, vol. 100, no. 3, pp. 399–410, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. F. M. Ducharme, G. M. Davis, and G. R. Ducharme, “Pediatric reference values for respiratory resistance measured by forced oscillation,” Chest, vol. 113, no. 5, pp. 1322–1328, 1998. View at Google Scholar · View at Scopus
  5. M. E. Wohl, L. C. Stigol, and J. Mead, “Resistance of the total respiratory system in healthy infants and infants with bronchiolitis,” Pediatrics, vol. 43, no. 4, pp. 495–509, 1969. View at Google Scholar · View at Scopus
  6. T. J. Gal and P. M. Suratt, “Resistance to breathing in healthy subjects following endotracheal intubation under topical anesthesia,” Anesthesia and Analgesia, vol. 59, no. 4, pp. 270–274, 1980. View at Google Scholar · View at Scopus
  7. P. Pelosi, M. Croci, E. Calappi et al., “The prone positioning during general anesthesia minimally affects respiratory mechanics while improving functional residual capacity and increasing oxygen tension,” Anesthesia and Analgesia, vol. 80, no. 5, pp. 955–960, 1995. View at Google Scholar · View at Scopus
  8. H. K. Kil, G. A. Rooke, M. A. Ryan-Dykes, and M. J. Bishop, “Effect of prophylactic bronchodilator treatment on lung resistance after tracheal intubation,” Anesthesiology, vol. 81, no. 1, pp. 43–48, 1994. View at Google Scholar · View at Scopus
  9. M. R. Miller, J. Hankinson, V. Brusasco et al., “Standardisation of spirometry,” European Respiratory Journal, vol. 26, no. 2, pp. 319–338, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Kano, D. L. Burton, C. J. Lanteri, and P. D. Sly, “Determination of peak expiratory flow,” European Respiratory Journal, vol. 6, no. 9, pp. 1347–1352, 1993. View at Google Scholar · View at Scopus
  11. H. Eigen, H. Bieler, D. Grant et al., “Spirometric pulmonary function in healthy preschool children,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 3, pp. 619–623, 2001. View at Google Scholar · View at Scopus
  12. P. Lebecque, K. Desmond, Y. Swartebroeckx, P. Dubois, J. Lulling, and A. Coates, “Measurement of respiratory system resistance by forced oscillation in normal children: a comparison with spirometric values,” Pediatric Pulmonology, vol. 10, no. 2, pp. 117–122, 1991. View at Google Scholar · View at Scopus
  13. A. B. DuBois, S. Y. Botelho, and J. H. Comroe Jr., “A new method for measuring airway resistance in man using a body plethysmograph: values in normal subjects and in patients with respiratory disease,” The Journal of Clinical Investigation, vol. 35, pp. 327–335, 1956. View at Google Scholar
  14. H. J. Smith, P. Reinhold, and M. D. Goldman, “Forced oscillation technique and impulse oscillometry,” European Respiratory Monograph, vol. 31, pp. 72–105, 2005. View at Google Scholar
  15. W. Buhr, R. Jörres, D. Berdel, and F. J. Làndsér, “Correspondence between forced oscillation and body plethysmography during bronchoprovocation with carbachol in children,” Pediatric pulmonology, vol. 8, no. 4, pp. 280–288, 1990. View at Google Scholar · View at Scopus
  16. A. B. Bohadana, R. Peslin, S. E. Megherbi et al., “Dose-response slope of forced oscillation and forced expiratory parameters in bronchial challenge testing,” European Respiratory Journal, vol. 13, no. 2, pp. 295–300, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Delacourt, H. Lorino, M. Herve-Guillot, P. Reinert, A. Harf, and B. Housset, “Use of the forced oscillation technique to assess airway obstruction and reversibility in children,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 3, pp. 730–736, 2000. View at Google Scholar · View at Scopus
  18. P. Lebecque and D. Stǎnescu, “Respiratory resistance by the forced oscillation technique in asthmatic children and cystic fibrosis patients,” European Respiratory Journal, vol. 10, no. 4, pp. 891–895, 1997. View at Google Scholar · View at Scopus
  19. T. Chinet, G. Pelle, I. Macquin-Mavier, H. Lorino, and A. Harf, “Comparison of the dose-response curves obtained by forced oscillation and plethysmography during carbachol inhalation,” European Respiratory Journal, vol. 1, no. 7, pp. 600–605, 1988. View at Google Scholar · View at Scopus
  20. J. Hellinckx, M. Cauberghs, K. de Boeck, and M. Demedts, “Evaluation of impulse oscillation system: comparison with forced oscillation technique and body plethysmography,” European Respiratory Journal, vol. 18, no. 3, pp. 564–570, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. C. G. Lausted and A. T. Johnson, “Respiratory resistance measured by an airflow perturbation device,” Physiological Measurement, vol. 20, no. 1, pp. 21–35, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. A. T. Johnson and M. S. Sahota, “Validation of airflow perturbation device resistance measurements in excised sheep lungs,” Physiological Measurement, vol. 25, no. 3, pp. 679–690, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. D. C. Coursey, S. M. Scharf, and A. T. Johnson, “Comparing pulmonary resistance measured with an esophageal balloon to resistance measurements with an airflow perturbation device,” Physiological Measurement, vol. 31, no. 7, pp. 921–934, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. A. T. Johnson, W. H. Scott, E. Russek-Cohen et al., “Resistance values obtained with the airflow perturbation device,” International Journal of Medical Implants and Devices, vol. 1, pp. 137–151, 2005. View at Google Scholar
  25. E. Oostveen, D. MacLeod, H. Lorino et al., “The forced oscillation technique in clinical practice: methodology, recommendations and future developments,” European Respiratory Journal, vol. 22, no. 6, pp. 1026–1041, 2003. View at Google Scholar · View at Scopus
  26. A. T. Johnson, S. C. Jones, J. J. Pan, and J. Vossoughi, “Variation of respiratory resistance suggests optimization of airway caliber,” IEEE Transactions on Biomedical Engineering, vol. 59, pp. 2355–2361, 2012. View at Google Scholar
  27. E. R. Lopresti, A. T. Johnson, F. C. Koh, W. H. Scott, S. Jamshidi, and N. K. Silverman, “Testing limits to airflow perturbation device (APD) measurements,” BioMedical Engineering Online, vol. 7, article 28, 2008. View at Publisher · View at Google Scholar · View at Scopus